結果
問題 | No.1255 ハイレーツ・オブ・ボリビアン |
ユーザー | 👑 Kazun |
提出日時 | 2020-08-15 04:15:42 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 965 bytes |
コンパイル時間 | 166 ms |
コンパイル使用メモリ | 82,176 KB |
実行使用メモリ | 52,352 KB |
最終ジャッジ日時 | 2024-06-28 05:39:39 |
合計ジャッジ時間 | 1,443 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | WA | - |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
ソースコード
#素因数分解 def Prime_Factorization(N): if N<0: R=[[-1,1]] else: R=[] N=abs(N) k=2 while k*k<=N: if N%k==0: C=0 while N%k==0: C+=1 N//=k R.append([k,C]) k+=1 if N!=1: R.append([N,1]) if not R: R.append([N,1]) return R #Euler's Totient関数 def Euler_Totient(N): N=abs(N) if N==1: return 1 H=Prime_Factorization(N) R=1 for (p,e) in H: R*=p**(e-1)*(p-1) return R #約数全部 def Divisors(N): N=abs(N) L,U=[],[] k=1 while k*k <=N: if N%k== 0: L.append(k) if k!=N//k: U.append(N//k) k+=1 return L+U[::-1] #================================================ N=int(input()) M=2*N-1 D=Euler_Totient(M) L=Divisors(D) for a in L: T=pow(2,a,M) if (T-1)%M==0: print(a) break