結果

問題 No.200 カードファイト!
ユーザー heno239
提出日時 2020-08-15 10:15:16
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 5,115 bytes
コンパイル時間 1,433 ms
コンパイル使用メモリ 124,352 KB
実行使用メモリ 6,272 KB
最終ジャッジ日時 2024-10-10 17:21:55
合計ジャッジ時間 2,226 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 23 WA * 3
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include<iostream>
#include<string>
#include<cstdio>
#include<vector>
#include<cmath>
#include<algorithm>
#include<functional>
#include<iomanip>
#include<queue>
#include<ciso646>
#include<random>
#include<map>
#include<set>
#include<bitset>
#include<stack>
#include<unordered_map>
#include<utility>
#include<cassert>
#include<complex>
#include<numeric>
using namespace std;
//#define int long long
typedef long long ll;
typedef unsigned long long ul;
typedef unsigned int ui;
constexpr ll mod = 1000000009;
const ll INF = mod * mod;
typedef pair<int, int>P;
#define stop char nyaa;cin>>nyaa;
#define rep(i,n) for(int i=0;i<n;i++)
#define per(i,n) for(int i=n-1;i>=0;i--)
#define Rep(i,sta,n) for(int i=sta;i<n;i++)
#define rep1(i,n) for(int i=1;i<=n;i++)
#define per1(i,n) for(int i=n;i>=1;i--)
#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)
#define all(v) (v).begin(),(v).end()
typedef pair<ll, ll> LP;
typedef double ld;
typedef pair<ld, ld> LDP;
const ld eps = 1e-12;
const ld pi = acos(-1.0);
ll mod_pow(ll x, ll n, ll m = mod) {
ll res = 1;
while (n) {
if (n & 1)res = res * x % m;
x = x * x % m; n >>= 1;
}
return res;
}
struct modint {
ll n;
modint() :n(0) { ; }
modint(ll m) :n(m) {
if (n >= mod)n %= mod;
else if (n < 0)n = (n % mod + mod) % mod;
}
operator int() { return n; }
};
bool operator==(modint a, modint b) { return a.n == b.n; }
modint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }
modint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }
modint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }
modint operator+(modint a, modint b) { return a += b; }
modint operator-(modint a, modint b) { return a -= b; }
modint operator*(modint a, modint b) { return a *= b; }
modint operator^(modint a, ll n) {
if (n == 0)return modint(1);
modint res = (a * a) ^ (n / 2);
if (n % 2)res = res * a;
return res;
}
ll inv(ll a, ll p) {
return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);
}
modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }
ll gcd(ll a, ll b) {
if (a < b)swap(a, b);
while (b) {
ll r = a % b; a = b; b = r;
}
return a;
}
int max_n;
const int mn = 100000;
struct edge {
int to, cap; ll cost; int rev;
};
vector<edge> G[mn];
P par[mn];
ll dist[mn];
void add_edge(int from, int to, int cap, ll cost) {
G[from].push_back({ to,cap,cost,(int)G[to].size() });
G[to].push_back({ from,0,-cost,(int)G[from].size() - 1 });
max_n = max({ max_n, from + 1, to + 1 });
}
void add_edge2(int from, int to, int cap, ll cost) {
G[from].push_back({ to,cap,cost,-1 });
//G[to].push_back({ from,0,-cost,(int)G[from].size() - 1 });
max_n = max({ max_n, from + 1, to + 1 });
}
LP minimum_road(int s, int t) {
fill(par, par + max_n, P{ -1,-1 });
fill(dist, dist + max_n, INF);
dist[s] = 0;
priority_queue<LP, vector<LP>, greater<LP>> q; q.push({ 0,s });
while (!q.empty()) {
LP p = q.top(); q.pop();
int id = p.second;
if (id == t)continue;
if (p.first > dist[id])continue;
rep(j, G[id].size()) {
if (G[id][j].cap > 0) {
int to = G[id][j].to;
ll nd = p.first + G[id][j].cost;
if (nd < dist[to]) {
dist[to] = nd;
par[to] = { id,j };
q.push({ dist[to],to });
}
}
}
}
int cur = t;
int f = mod;
while (cur != s) {
int p = par[cur].first, j = par[cur].second;
if (p < 0)return { -1,-1 };
f = min(f, G[p][j].cap);
cur = p;
}
cur = t;
while (cur != s) {
int p = par[cur].first, j = par[cur].second;
if (p < 0)return { -1,-1 };
G[p][j].cap -= f;
if (G[p][j].rev >= 0) {
G[cur][G[p][j].rev].cap += f;
}
cur = p;
}
return { dist[t],f };
}
ll minimum_cost_flow(int s, int t, int k) {
ll ret = 0;
rep(i, k) {
LP z = minimum_road(s, t);
if (z.first < 0)return -1;
if (k - i <= z.second) {
ret += z.first * (k - i); break;
}
i += z.second - 1;
ret += z.first * z.second;
}
return ret;
}
void solve() {
int n; cin >> n;
vector<int> a, b;
int d1, d2;
int sz; cin >> sz;
d1 = (n+sz-1) / sz;
rep(i, sz) {
int x; cin >> x;
a.push_back(x);
}
cin >> sz;
d2 = (n+sz-1) / sz;
rep(i, sz) {
int x; cin >> x;
b.push_back(x);
}
int s = 200,t = 201;
rep(i, d1) {
int le = a.size() * i, ri = a.size() * (i + 1);
int l = le / b.size();
int r = (ri - 1) / b.size();
rep(j, a.size()) {
for (int k = l * b.size(); k < (r + 1) * b.size(); k++) {
int cost = 1;
if (a[j] > b[k % b.size()])cost = 0;
add_edge(j + le, 100 + k, 1, cost);
}
}
}
int r = n - (a.size() * (d1 - 1));
int s2 = 202;
rep(i, a.size()*(d1-1)) {
add_edge(s, i, 1, 0);
}
add_edge(s, s2, r, 0);
rep(i, a.size()) {
add_edge(s2, a.size() * (d1 - 1) + i, 1, 0);
}
rep(i, b.size()*d2) {
add_edge(100 + i, t, 1, 0);
}
int f = minimum_cost_flow(s, t, n);
//cout << a.size() * d1 << " " << b.size() * d2 << "\n";
//cout << "? " << f << "\n";
cout << n - f << "\n";
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(0);
//cout << fixed << setprecision(10);
//init_f();
//init();
//expr();
//int t; cin >> t; rep(i, t)
solve();
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0