結果

問題 No.1170 Never Want to Walk
ユーザー maguroguma
提出日時 2020-08-15 13:53:37
言語 Go
(1.23.4)
結果
AC  
実行時間 758 ms / 2,000 ms
コード長 8,681 bytes
コンパイル時間 13,863 ms
コンパイル使用メモリ 237,000 KB
実行使用メモリ 20,260 KB
最終ジャッジ日時 2024-10-10 17:51:12
合計ジャッジ時間 25,243 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 37
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

/*
URL:
https://yukicoder.me/problems/no/1170
*/
package main
import (
"bufio"
"fmt"
"io"
"math"
"os"
"sort"
"strconv"
)
/*******************************************************************/
var (
n, a, b int
X []int
S []Segment
)
type Segment struct {
s, t int
}
func main() {
n, a, b = ReadInt3()
X = ReadIntSlice(n)
uf := NewUnionFind(n)
for i := 0; i < n; i++ {
x := X[i]
T := X[i+1:]
mini := BinarySearch(len(T), -1, func(mid int) bool {
return T[mid]-x >= a
})
maxi := BinarySearch(-1, len(T), func(mid int) bool {
return T[mid]-x <= b
})
PrintfDebug("mini: %d, maxi: %d\n", mini+i+1, maxi+i+1)
if maxi < mini {
continue
}
uf.Unite(i, mini+(i+1))
S = append(S, Segment{s: mini + (i + 1), t: maxi + (i + 1)})
}
sort.SliceStable(S, func(i, j int) bool {
if S[i].s < S[j].s {
return true
} else if S[i].s > S[j].s {
return false
} else {
return S[i].t < S[j].t
}
})
if len(S) > 0 {
T := []Segment{}
curSeg := S[0]
for i := 1; i < len(S); i++ {
if curSeg.t >= S[i].s {
curSeg = Segment{s: curSeg.s, t: Max(curSeg.t, S[i].t)}
} else {
T = append(T, curSeg)
curSeg = S[i]
}
}
T = append(T, curSeg)
PrintfDebug("%v\n", T)
for _, seg := range T {
for i := seg.s; i < seg.t; i++ {
uf.Unite(i, i+1)
}
}
}
for i := 0; i < n; i++ {
fmt.Println(uf.CcSize(i))
}
}
// Max returns the max integer among input set.
// This function needs at least 1 argument (no argument causes panic).
func Max(integers ...int) int {
m := integers[0]
for i, integer := range integers {
if i == 0 {
continue
}
if m < integer {
m = integer
}
}
return m
}
// 0-based
// uf := NewUnionFind(n)
// uf.Root(x) // Get root node of the node x
// uf.Unite(x, y) // Unite node x and node y
// uf.Same(x, y) // Judge x and y are in the same connected component.
// uf.CcSize(x) // Get size of the connected component including node x
// uf.CcNum() // Get number of connected components
// UnionFind provides disjoint set algorithm.
// Node id starts from 0 (0-based setting).
type UnionFind struct {
parents []int
}
// NewUnionFind returns a pointer of a new instance of UnionFind.
func NewUnionFind(n int) *UnionFind {
uf := new(UnionFind)
uf.parents = make([]int, n)
for i := 0; i < n; i++ {
uf.parents[i] = -1
}
return uf
}
// Root method returns root node of an argument node.
// Root method is a recursive function.
func (uf *UnionFind) Root(x int) int {
if uf.parents[x] < 0 {
return x
}
// route compression
uf.parents[x] = uf.Root(uf.parents[x])
return uf.parents[x]
}
// Unite method merges a set including x and a set including y.
func (uf *UnionFind) Unite(x, y int) bool {
xp := uf.Root(x)
yp := uf.Root(y)
if xp == yp {
return false
}
// merge: xp -> yp
// merge larger set to smaller set
if uf.CcSize(xp) > uf.CcSize(yp) {
xp, yp = yp, xp
}
// update set size
uf.parents[yp] += uf.parents[xp]
// finally, merge
uf.parents[xp] = yp
return true
}
// Same method returns whether x is in the set including y or not.
func (uf *UnionFind) Same(x, y int) bool {
return uf.Root(x) == uf.Root(y)
}
// CcSize method returns the size of a set including an argument node.
func (uf *UnionFind) CcSize(x int) int {
return -uf.parents[uf.Root(x)]
}
// CcNum method returns the number of connected components.
// Time complextity is O(n)
func (uf *UnionFind) CcNum() int {
res := 0
for i := 0; i < len(uf.parents); i++ {
if uf.parents[i] < 0 {
res++
}
}
return res
}
// ChMax accepts a pointer of integer and a target value.
// If target value is LARGER than the first argument,
// then the first argument will be updated by the second argument.
func ChMax(updatedValue *int, target int) bool {
if *updatedValue < target {
*updatedValue = target
return true
}
return false
}
func BinarySearch(initOK, initNG int, isOK func(mid int) bool) (ok int) {
ng := initNG
ok = initOK
for int(math.Abs(float64(ok-ng))) > 1 {
mid := (ok + ng) / 2
if isOK(mid) {
ok = mid
} else {
ng = mid
}
}
return ok
}
const (
// General purpose
MOD = 1000000000 + 7
// MOD = 998244353
ALPHABET_NUM = 26
INF_INT64 = math.MaxInt64
INF_BIT60 = 1 << 60
INF_INT32 = math.MaxInt32
INF_BIT30 = 1 << 30
NIL = -1
// for dijkstra, prim, and so on
WHITE = 0
GRAY = 1
BLACK = 2
)
/*******************************************************************/
/********** bufio setting **********/
func init() {
// bufio.ScanWords <---> bufio.ScanLines
ReadString = newReadString(os.Stdin, bufio.ScanWords)
stdout = bufio.NewWriter(os.Stdout)
}
/********** FAU standard libraries **********/
//fmt.Sprintf("%b\n", 255) // binary expression
/********** I/O usage **********/
//str := ReadString()
//i := ReadInt()
//X := ReadIntSlice(n)
//S := ReadRuneSlice()
//a := ReadFloat64()
//A := ReadFloat64Slice(n)
//str := ZeroPaddingRuneSlice(num, 32)
//str := PrintIntsLine(X...)
/*********** Input ***********/
var (
// ReadString returns a WORD string.
ReadString func() string
stdout *bufio.Writer
)
func newReadString(ior io.Reader, sf bufio.SplitFunc) func() string {
r := bufio.NewScanner(ior)
r.Buffer(make([]byte, 1024), int(1e+9)) // for Codeforces
r.Split(sf)
return func() string {
if !r.Scan() {
panic("Scan failed")
}
return r.Text()
}
}
// ReadInt returns an integer.
func ReadInt() int {
return int(readInt64())
}
func ReadInt2() (int, int) {
return int(readInt64()), int(readInt64())
}
func ReadInt3() (int, int, int) {
return int(readInt64()), int(readInt64()), int(readInt64())
}
func ReadInt4() (int, int, int, int) {
return int(readInt64()), int(readInt64()), int(readInt64()), int(readInt64())
}
// ReadInt64 returns as integer as int64.
func ReadInt64() int64 {
return readInt64()
}
func ReadInt64_2() (int64, int64) {
return readInt64(), readInt64()
}
func ReadInt64_3() (int64, int64, int64) {
return readInt64(), readInt64(), readInt64()
}
func ReadInt64_4() (int64, int64, int64, int64) {
return readInt64(), readInt64(), readInt64(), readInt64()
}
func readInt64() int64 {
i, err := strconv.ParseInt(ReadString(), 0, 64)
if err != nil {
panic(err.Error())
}
return i
}
// ReadIntSlice returns an integer slice that has n integers.
func ReadIntSlice(n int) []int {
b := make([]int, n)
for i := 0; i < n; i++ {
b[i] = ReadInt()
}
return b
}
// ReadInt64Slice returns as int64 slice that has n integers.
func ReadInt64Slice(n int) []int64 {
b := make([]int64, n)
for i := 0; i < n; i++ {
b[i] = ReadInt64()
}
return b
}
// ReadFloat64 returns an float64.
func ReadFloat64() float64 {
return float64(readFloat64())
}
func readFloat64() float64 {
f, err := strconv.ParseFloat(ReadString(), 64)
if err != nil {
panic(err.Error())
}
return f
}
// ReadFloatSlice returns an float64 slice that has n float64.
func ReadFloat64Slice(n int) []float64 {
b := make([]float64, n)
for i := 0; i < n; i++ {
b[i] = ReadFloat64()
}
return b
}
// ReadRuneSlice returns a rune slice.
func ReadRuneSlice() []rune {
return []rune(ReadString())
}
/*********** Output ***********/
// PrintIntsLine returns integers string delimited by a space.
func PrintIntsLine(A ...int) string {
res := []rune{}
for i := 0; i < len(A); i++ {
str := strconv.Itoa(A[i])
res = append(res, []rune(str)...)
if i != len(A)-1 {
res = append(res, ' ')
}
}
return string(res)
}
// PrintIntsLine returns integers string delimited by a space.
func PrintInts64Line(A ...int64) string {
res := []rune{}
for i := 0; i < len(A); i++ {
str := strconv.FormatInt(A[i], 10) // 64bit int version
res = append(res, []rune(str)...)
if i != len(A)-1 {
res = append(res, ' ')
}
}
return string(res)
}
// PrintfBufStdout is function for output strings to buffered os.Stdout.
// You may have to call stdout.Flush() finally.
func PrintfBufStdout(format string, a ...interface{}) {
fmt.Fprintf(stdout, format, a...)
}
/*********** Debugging ***********/
// PrintfDebug is wrapper of fmt.Fprintf(os.Stderr, format, a...)
func PrintfDebug(format string, a ...interface{}) {
fmt.Fprintf(os.Stderr, format, a...)
}
// ZeroPaddingRuneSlice returns binary expressions of integer n with zero padding.
// For debugging use.
func ZeroPaddingRuneSlice(n, digitsNum int) []rune {
sn := fmt.Sprintf("%b", n)
residualLength := digitsNum - len(sn)
if residualLength <= 0 {
return []rune(sn)
}
zeros := make([]rune, residualLength)
for i := 0; i < len(zeros); i++ {
zeros[i] = '0'
}
res := []rune{}
res = append(res, zeros...)
res = append(res, []rune(sn)...)
return res
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0