結果
| 問題 |
No.8030 ミラー・ラビン素数判定法のテスト
|
| ユーザー |
Tlapesium
|
| 提出日時 | 2020-08-15 19:31:03 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 1,813 bytes |
| コンパイル時間 | 3,458 ms |
| コンパイル使用メモリ | 213,608 KB |
| 最終ジャッジ日時 | 2025-01-13 01:40:17 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 3 WA * 7 |
コンパイルメッセージ
main.cpp: In function ‘bool isprime_int32(int)’:
main.cpp:29:27: warning: ‘d’ may be used uninitialized [-Wmaybe-uninitialized]
29 | if (modpow(a[i], d, N) == 1)continue;
| ~~~~~~^~~~~~~~~~~~
main.cpp:17:20: note: ‘d’ was declared here
17 | int s = 0, d;
| ^
main.cpp: In function ‘bool isprime_int64(ll)’:
main.cpp:55:27: warning: ‘d’ may be used uninitialized [-Wmaybe-uninitialized]
55 | if (modpow(a[i], d, N) == 1)continue;
| ~~~~~~^~~~~~~~~~~~
main.cpp:43:20: note: ‘d’ was declared here
43 | int s = 0, d;
| ^
ソースコード
#pragma GCC optimize("O3")
//#pragma GCC optimize ("unroll-loops")
#pragma GCC target ("avx2")
#define io_init cin.tie(0);ios::sync_with_stdio(0);cout<<setprecision(10)
#include <bits/stdc++.h>
constexpr int INF = 2147483647;
constexpr long long int INF_LL = 9223372036854775807;
constexpr int MOD = 1000000007;
constexpr double PI = 3.14159265358979323846;
using namespace std;
typedef long long int ll;
typedef unsigned long long int ull;
bool isprime_int32(int N) {
if (N == 2)return 1;
if (N % 2 == 0 || N <= 2)return 0;
int s = 0, d;
int a[] = { 2, 13, 23, 1662803 };
for (int i = N - 1; i % 2 == 0; i /= 2)s++, d = i/2;
auto modpow = [](ll x, ll k, ll mod) {
ll res = 1;
for (x %= mod; k; x = x * x % mod, k >>= 1)
if (k & 1) res = res * x % mod;
return res;
};
for (int i = 0; i < 4; i++) {
bool flag = 1;
if (N <= a[i])continue;
if (modpow(a[i], d, N) == 1)continue;
for (int j = 0; j < s; j++) if (modpow(a[i], d * (1 << j), N) == N - 1) {
flag = 0;
break;
}
if (flag)return 0;
}
return 1;
}
bool isprime_int64(ll N) {
if (N == 2)return 1;
if (N % 2 == 0 || N <= 2)return 0;
int s = 0, d;
int a[] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,37 };
for (int i = N - 1; i % 2 == 0; i /= 2)s++, d = i / 2;
auto modpow = [](ll x, ll k, ll mod) {
ll res = 1;
for (x %= mod; k; x = x * x % mod, k >>= 1)
if (k & 1) res = res * x % mod;
return res;
};
for (int i = 0; i < 12; i++) {
bool flag = 1;
if (N <= a[i])continue;
if (modpow(a[i], d, N) == 1)continue;
for (int j = 0; j < s; j++) if (modpow(a[i], d * (1 << j), N) == N - 1) {
flag = 0;
break;
}
if (flag)return 0;
}
return 1;
}
int main() {
io_init;
int N;
cin >> N;
for (int i = 0; i < N; i++) {
int x;
cin >> x;
cout << x << " " << isprime_int64(x) << endl;
}
}
Tlapesium