結果

問題 No.1172 Add Recursive Sequence
ユーザー kimiyuki
提出日時 2020-08-16 00:40:01
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 291 ms / 4,000 ms
コード長 5,844 bytes
コンパイル時間 3,487 ms
コンパイル使用メモリ 202,560 KB
最終ジャッジ日時 2025-01-13 01:48:12
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 16
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#line 1 "main.cpp"
#include <bits/stdc++.h>
#line 2 "/home/user/Library/utils/macros.hpp"
#define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i))
#define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i))
#define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i))
#define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i))
#define ALL(x) std::begin(x), std::end(x)
#line 4 "/home/user/Library/modulus/modpow.hpp"
inline int32_t modpow(uint_fast64_t x, uint64_t k, int32_t MOD) {
assert (/* 0 <= x and */ x < (uint_fast64_t)MOD);
uint_fast64_t y = 1;
for (; k; k >>= 1) {
if (k & 1) (y *= x) %= MOD;
(x *= x) %= MOD;
}
assert (/* 0 <= y and */ y < (uint_fast64_t)MOD);
return y;
}
#line 5 "/home/user/Library/modulus/modinv.hpp"
inline int32_t modinv_nocheck(int32_t value, int32_t MOD) {
assert (0 <= value and value < MOD);
if (value == 0) return -1;
int64_t a = value, b = MOD;
int64_t x = 0, y = 1;
for (int64_t u = 1, v = 0; a; ) {
int64_t q = b / a;
x -= q * u; std::swap(x, u);
y -= q * v; std::swap(y, v);
b -= q * a; std::swap(b, a);
}
if (not (value * x + MOD * y == b and b == 1)) return -1;
if (x < 0) x += MOD;
assert (0 <= x and x < MOD);
return x;
}
inline int32_t modinv(int32_t x, int32_t MOD) {
int32_t y = modinv_nocheck(x, MOD);
assert (y != -1);
return y;
}
#line 6 "/home/user/Library/modulus/mint.hpp"
/**
* @brief quotient ring / $\mathbb{Z}/n\mathbb{Z}$
*/
template <int32_t MOD>
struct mint {
int32_t value;
mint() : value() {}
mint(int64_t value_) : value(value_ < 0 ? value_ % MOD + MOD : value_ >= MOD ? value_ % MOD : value_) {}
mint(int32_t value_, std::nullptr_t) : value(value_) {}
explicit operator bool() const { return value; }
inline mint<MOD> operator + (mint<MOD> other) const { return mint<MOD>(*this) += other; }
inline mint<MOD> operator - (mint<MOD> other) const { return mint<MOD>(*this) -= other; }
inline mint<MOD> operator * (mint<MOD> other) const { return mint<MOD>(*this) *= other; }
inline mint<MOD> & operator += (mint<MOD> other) { this->value += other.value; if (this->value >= MOD) this->value -= MOD; return *this; }
inline mint<MOD> & operator -= (mint<MOD> other) { this->value -= other.value; if (this->value < 0) this->value += MOD; return *this; }
inline mint<MOD> & operator *= (mint<MOD> other) { this->value = (uint_fast64_t)this->value * other.value % MOD; return *this; }
inline mint<MOD> operator - () const { return mint<MOD>(this->value ? MOD - this->value : 0, nullptr); }
inline bool operator == (mint<MOD> other) const { return value == other.value; }
inline bool operator != (mint<MOD> other) const { return value != other.value; }
inline mint<MOD> pow(uint64_t k) const { return mint<MOD>(modpow(value, k, MOD), nullptr); }
inline mint<MOD> inv() const { return mint<MOD>(modinv(value, MOD), nullptr); }
inline mint<MOD> operator / (mint<MOD> other) const { return *this * other.inv(); }
inline mint<MOD> & operator /= (mint<MOD> other) { return *this *= other.inv(); }
};
template <int32_t MOD> mint<MOD> operator + (int64_t value, mint<MOD> n) { return mint<MOD>(value) + n; }
template <int32_t MOD> mint<MOD> operator - (int64_t value, mint<MOD> n) { return mint<MOD>(value) - n; }
template <int32_t MOD> mint<MOD> operator * (int64_t value, mint<MOD> n) { return mint<MOD>(value) * n; }
template <int32_t MOD> mint<MOD> operator / (int64_t value, mint<MOD> n) { return mint<MOD>(value) / n; }
template <int32_t MOD> std::istream & operator >> (std::istream & in, mint<MOD> & n) { int64_t value; in >> value; n = value; return in; }
template <int32_t MOD> std::ostream & operator << (std::ostream & out, mint<MOD> n) { return out << n.value; }
#line 4 "main.cpp"
using namespace std;
constexpr int64_t MOD = 1000000007;
auto solve(int k, int n, int m, const vector<int64_t> & a_init, const vector<int64_t> & c, const vector<int> & l, const vector<int> & r) {
// calculate a
vector<mint<MOD> > a(n);
REP (i, k) {
a[i] = a_init[i];
}
REP3 (i, k, n) {
REP (j, k) {
a[i] += c[j] * a[i - j - 1];
}
}
// compute the parts of queries which are smaller or equal to k
vector<mint<MOD> > x(n);
vector<vector<int> > events(n + 1);
REP (q, m) {
REP (j, min(n, min(k, r[q] - l[q]))) {
x[l[q] + j] += a[j];
}
if (r[q] - l[q] > k) {
events[l[q] + k].push_back(q);
events[r[q]].push_back(q);
}
}
// compute the parts of queries which are longer than k
vector<mint<MOD> > imos(n);
REP3 (i, k, n) {
for (int q : events[i]) {
if (i == l[q] + k) {
REP (j, k) {
imos[l[q] + j] += a[j];
}
} else {
REP (j, k) {
imos[r[q] - k + j] -= a[r[q] - l[q] - k + j];
}
}
}
mint<MOD> y = 0;
REP (j, k) {
y += c[j] * imos[i - j - 1];
}
x[i] += y;
imos[i] += y;
}
return x;
}
// generated by online-judge-template-generator v4.5.1 (https://github.com/kmyk/online-judge-template-generator)
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
constexpr char endl = '\n';
int K;
int N;
int M;
cin >> K;
vector<int64_t> a(K), c(K);
cin >> N >> M;
vector<int> l(M), r(M);
REP (i, K) {
cin >> a[i];
}
REP (i, K) {
cin >> c[i];
}
REP (i, M) {
cin >> l[i] >> r[i];
}
auto ans = solve(K, N, M, a, c, l, r);
REP (i, N) {
cout << ans[i] << endl;
}
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0