結果
問題 | No.1172 Add Recursive Sequence |
ユーザー | kimiyuki |
提出日時 | 2020-08-16 00:40:01 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 302 ms / 4,000 ms |
コード長 | 5,844 bytes |
コンパイル時間 | 2,645 ms |
コンパイル使用メモリ | 210,256 KB |
実行使用メモリ | 10,240 KB |
最終ジャッジ日時 | 2024-10-11 04:52:24 |
合計ジャッジ時間 | 4,657 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 1 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 3 ms
5,248 KB |
testcase_07 | AC | 3 ms
5,248 KB |
testcase_08 | AC | 3 ms
5,248 KB |
testcase_09 | AC | 3 ms
5,248 KB |
testcase_10 | AC | 10 ms
5,248 KB |
testcase_11 | AC | 9 ms
5,248 KB |
testcase_12 | AC | 9 ms
5,248 KB |
testcase_13 | AC | 9 ms
5,248 KB |
testcase_14 | AC | 64 ms
10,148 KB |
testcase_15 | AC | 43 ms
8,576 KB |
testcase_16 | AC | 302 ms
10,240 KB |
testcase_17 | AC | 272 ms
8,576 KB |
ソースコード
#line 1 "main.cpp" #include <bits/stdc++.h> #line 2 "/home/user/Library/utils/macros.hpp" #define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i)) #define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i)) #define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i)) #define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i)) #define ALL(x) std::begin(x), std::end(x) #line 4 "/home/user/Library/modulus/modpow.hpp" inline int32_t modpow(uint_fast64_t x, uint64_t k, int32_t MOD) { assert (/* 0 <= x and */ x < (uint_fast64_t)MOD); uint_fast64_t y = 1; for (; k; k >>= 1) { if (k & 1) (y *= x) %= MOD; (x *= x) %= MOD; } assert (/* 0 <= y and */ y < (uint_fast64_t)MOD); return y; } #line 5 "/home/user/Library/modulus/modinv.hpp" inline int32_t modinv_nocheck(int32_t value, int32_t MOD) { assert (0 <= value and value < MOD); if (value == 0) return -1; int64_t a = value, b = MOD; int64_t x = 0, y = 1; for (int64_t u = 1, v = 0; a; ) { int64_t q = b / a; x -= q * u; std::swap(x, u); y -= q * v; std::swap(y, v); b -= q * a; std::swap(b, a); } if (not (value * x + MOD * y == b and b == 1)) return -1; if (x < 0) x += MOD; assert (0 <= x and x < MOD); return x; } inline int32_t modinv(int32_t x, int32_t MOD) { int32_t y = modinv_nocheck(x, MOD); assert (y != -1); return y; } #line 6 "/home/user/Library/modulus/mint.hpp" /** * @brief quotient ring / 剰余環 $\mathbb{Z}/n\mathbb{Z}$ */ template <int32_t MOD> struct mint { int32_t value; mint() : value() {} mint(int64_t value_) : value(value_ < 0 ? value_ % MOD + MOD : value_ >= MOD ? value_ % MOD : value_) {} mint(int32_t value_, std::nullptr_t) : value(value_) {} explicit operator bool() const { return value; } inline mint<MOD> operator + (mint<MOD> other) const { return mint<MOD>(*this) += other; } inline mint<MOD> operator - (mint<MOD> other) const { return mint<MOD>(*this) -= other; } inline mint<MOD> operator * (mint<MOD> other) const { return mint<MOD>(*this) *= other; } inline mint<MOD> & operator += (mint<MOD> other) { this->value += other.value; if (this->value >= MOD) this->value -= MOD; return *this; } inline mint<MOD> & operator -= (mint<MOD> other) { this->value -= other.value; if (this->value < 0) this->value += MOD; return *this; } inline mint<MOD> & operator *= (mint<MOD> other) { this->value = (uint_fast64_t)this->value * other.value % MOD; return *this; } inline mint<MOD> operator - () const { return mint<MOD>(this->value ? MOD - this->value : 0, nullptr); } inline bool operator == (mint<MOD> other) const { return value == other.value; } inline bool operator != (mint<MOD> other) const { return value != other.value; } inline mint<MOD> pow(uint64_t k) const { return mint<MOD>(modpow(value, k, MOD), nullptr); } inline mint<MOD> inv() const { return mint<MOD>(modinv(value, MOD), nullptr); } inline mint<MOD> operator / (mint<MOD> other) const { return *this * other.inv(); } inline mint<MOD> & operator /= (mint<MOD> other) { return *this *= other.inv(); } }; template <int32_t MOD> mint<MOD> operator + (int64_t value, mint<MOD> n) { return mint<MOD>(value) + n; } template <int32_t MOD> mint<MOD> operator - (int64_t value, mint<MOD> n) { return mint<MOD>(value) - n; } template <int32_t MOD> mint<MOD> operator * (int64_t value, mint<MOD> n) { return mint<MOD>(value) * n; } template <int32_t MOD> mint<MOD> operator / (int64_t value, mint<MOD> n) { return mint<MOD>(value) / n; } template <int32_t MOD> std::istream & operator >> (std::istream & in, mint<MOD> & n) { int64_t value; in >> value; n = value; return in; } template <int32_t MOD> std::ostream & operator << (std::ostream & out, mint<MOD> n) { return out << n.value; } #line 4 "main.cpp" using namespace std; constexpr int64_t MOD = 1000000007; auto solve(int k, int n, int m, const vector<int64_t> & a_init, const vector<int64_t> & c, const vector<int> & l, const vector<int> & r) { // calculate a vector<mint<MOD> > a(n); REP (i, k) { a[i] = a_init[i]; } REP3 (i, k, n) { REP (j, k) { a[i] += c[j] * a[i - j - 1]; } } // compute the parts of queries which are smaller or equal to k vector<mint<MOD> > x(n); vector<vector<int> > events(n + 1); REP (q, m) { REP (j, min(n, min(k, r[q] - l[q]))) { x[l[q] + j] += a[j]; } if (r[q] - l[q] > k) { events[l[q] + k].push_back(q); events[r[q]].push_back(q); } } // compute the parts of queries which are longer than k vector<mint<MOD> > imos(n); REP3 (i, k, n) { for (int q : events[i]) { if (i == l[q] + k) { REP (j, k) { imos[l[q] + j] += a[j]; } } else { REP (j, k) { imos[r[q] - k + j] -= a[r[q] - l[q] - k + j]; } } } mint<MOD> y = 0; REP (j, k) { y += c[j] * imos[i - j - 1]; } x[i] += y; imos[i] += y; } return x; } // generated by online-judge-template-generator v4.5.1 (https://github.com/kmyk/online-judge-template-generator) int main() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); constexpr char endl = '\n'; int K; int N; int M; cin >> K; vector<int64_t> a(K), c(K); cin >> N >> M; vector<int> l(M), r(M); REP (i, K) { cin >> a[i]; } REP (i, K) { cin >> c[i]; } REP (i, M) { cin >> l[i] >> r[i]; } auto ans = solve(K, N, M, a, c, l, r); REP (i, N) { cout << ans[i] << endl; } return 0; }