結果
問題 | No.1172 Add Recursive Sequence |
ユーザー |
|
提出日時 | 2020-08-16 00:40:01 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 291 ms / 4,000 ms |
コード長 | 5,844 bytes |
コンパイル時間 | 3,487 ms |
コンパイル使用メモリ | 202,560 KB |
最終ジャッジ日時 | 2025-01-13 01:48:12 |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 16 |
ソースコード
#line 1 "main.cpp"#include <bits/stdc++.h>#line 2 "/home/user/Library/utils/macros.hpp"#define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i))#define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i))#define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i))#define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i))#define ALL(x) std::begin(x), std::end(x)#line 4 "/home/user/Library/modulus/modpow.hpp"inline int32_t modpow(uint_fast64_t x, uint64_t k, int32_t MOD) {assert (/* 0 <= x and */ x < (uint_fast64_t)MOD);uint_fast64_t y = 1;for (; k; k >>= 1) {if (k & 1) (y *= x) %= MOD;(x *= x) %= MOD;}assert (/* 0 <= y and */ y < (uint_fast64_t)MOD);return y;}#line 5 "/home/user/Library/modulus/modinv.hpp"inline int32_t modinv_nocheck(int32_t value, int32_t MOD) {assert (0 <= value and value < MOD);if (value == 0) return -1;int64_t a = value, b = MOD;int64_t x = 0, y = 1;for (int64_t u = 1, v = 0; a; ) {int64_t q = b / a;x -= q * u; std::swap(x, u);y -= q * v; std::swap(y, v);b -= q * a; std::swap(b, a);}if (not (value * x + MOD * y == b and b == 1)) return -1;if (x < 0) x += MOD;assert (0 <= x and x < MOD);return x;}inline int32_t modinv(int32_t x, int32_t MOD) {int32_t y = modinv_nocheck(x, MOD);assert (y != -1);return y;}#line 6 "/home/user/Library/modulus/mint.hpp"/*** @brief quotient ring / 剰余環 $\mathbb{Z}/n\mathbb{Z}$*/template <int32_t MOD>struct mint {int32_t value;mint() : value() {}mint(int64_t value_) : value(value_ < 0 ? value_ % MOD + MOD : value_ >= MOD ? value_ % MOD : value_) {}mint(int32_t value_, std::nullptr_t) : value(value_) {}explicit operator bool() const { return value; }inline mint<MOD> operator + (mint<MOD> other) const { return mint<MOD>(*this) += other; }inline mint<MOD> operator - (mint<MOD> other) const { return mint<MOD>(*this) -= other; }inline mint<MOD> operator * (mint<MOD> other) const { return mint<MOD>(*this) *= other; }inline mint<MOD> & operator += (mint<MOD> other) { this->value += other.value; if (this->value >= MOD) this->value -= MOD; return *this; }inline mint<MOD> & operator -= (mint<MOD> other) { this->value -= other.value; if (this->value < 0) this->value += MOD; return *this; }inline mint<MOD> & operator *= (mint<MOD> other) { this->value = (uint_fast64_t)this->value * other.value % MOD; return *this; }inline mint<MOD> operator - () const { return mint<MOD>(this->value ? MOD - this->value : 0, nullptr); }inline bool operator == (mint<MOD> other) const { return value == other.value; }inline bool operator != (mint<MOD> other) const { return value != other.value; }inline mint<MOD> pow(uint64_t k) const { return mint<MOD>(modpow(value, k, MOD), nullptr); }inline mint<MOD> inv() const { return mint<MOD>(modinv(value, MOD), nullptr); }inline mint<MOD> operator / (mint<MOD> other) const { return *this * other.inv(); }inline mint<MOD> & operator /= (mint<MOD> other) { return *this *= other.inv(); }};template <int32_t MOD> mint<MOD> operator + (int64_t value, mint<MOD> n) { return mint<MOD>(value) + n; }template <int32_t MOD> mint<MOD> operator - (int64_t value, mint<MOD> n) { return mint<MOD>(value) - n; }template <int32_t MOD> mint<MOD> operator * (int64_t value, mint<MOD> n) { return mint<MOD>(value) * n; }template <int32_t MOD> mint<MOD> operator / (int64_t value, mint<MOD> n) { return mint<MOD>(value) / n; }template <int32_t MOD> std::istream & operator >> (std::istream & in, mint<MOD> & n) { int64_t value; in >> value; n = value; return in; }template <int32_t MOD> std::ostream & operator << (std::ostream & out, mint<MOD> n) { return out << n.value; }#line 4 "main.cpp"using namespace std;constexpr int64_t MOD = 1000000007;auto solve(int k, int n, int m, const vector<int64_t> & a_init, const vector<int64_t> & c, const vector<int> & l, const vector<int> & r) {// calculate avector<mint<MOD> > a(n);REP (i, k) {a[i] = a_init[i];}REP3 (i, k, n) {REP (j, k) {a[i] += c[j] * a[i - j - 1];}}// compute the parts of queries which are smaller or equal to kvector<mint<MOD> > x(n);vector<vector<int> > events(n + 1);REP (q, m) {REP (j, min(n, min(k, r[q] - l[q]))) {x[l[q] + j] += a[j];}if (r[q] - l[q] > k) {events[l[q] + k].push_back(q);events[r[q]].push_back(q);}}// compute the parts of queries which are longer than kvector<mint<MOD> > imos(n);REP3 (i, k, n) {for (int q : events[i]) {if (i == l[q] + k) {REP (j, k) {imos[l[q] + j] += a[j];}} else {REP (j, k) {imos[r[q] - k + j] -= a[r[q] - l[q] - k + j];}}}mint<MOD> y = 0;REP (j, k) {y += c[j] * imos[i - j - 1];}x[i] += y;imos[i] += y;}return x;}// generated by online-judge-template-generator v4.5.1 (https://github.com/kmyk/online-judge-template-generator)int main() {std::ios::sync_with_stdio(false);std::cin.tie(nullptr);constexpr char endl = '\n';int K;int N;int M;cin >> K;vector<int64_t> a(K), c(K);cin >> N >> M;vector<int> l(M), r(M);REP (i, K) {cin >> a[i];}REP (i, K) {cin >> c[i];}REP (i, M) {cin >> l[i] >> r[i];}auto ans = solve(K, N, M, a, c, l, r);REP (i, N) {cout << ans[i] << endl;}return 0;}