結果
| 問題 |
No.229 線分上を往復する3つの動点の一致
|
| コンテスト | |
| ユーザー |
heno239
|
| 提出日時 | 2020-08-16 02:00:26 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 3,047 bytes |
| コンパイル時間 | 1,297 ms |
| コンパイル使用メモリ | 119,016 KB |
| 実行使用メモリ | 6,824 KB |
| 最終ジャッジ日時 | 2024-10-11 10:22:25 |
| 合計ジャッジ時間 | 2,694 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 35 WA * 8 |
ソースコード
#include<iostream>
#include<string>
#include<cstdio>
#include<vector>
#include<cmath>
#include<algorithm>
#include<functional>
#include<iomanip>
#include<queue>
#include<ciso646>
#include<random>
#include<map>
#include<set>
#include<bitset>
#include<stack>
#include<unordered_map>
#include<utility>
#include<cassert>
#include<complex>
#include<numeric>
using namespace std;
//#define int long long
typedef long long ll;
typedef unsigned long long ul;
typedef unsigned int ui;
constexpr ll mod = 1000000007;
const ll INF = mod * mod;
typedef pair<int, int>P;
#define stop char nyaa;cin>>nyaa;
#define rep(i,n) for(int i=0;i<n;i++)
#define per(i,n) for(int i=n-1;i>=0;i--)
#define Rep(i,sta,n) for(int i=sta;i<n;i++)
#define rep1(i,n) for(int i=1;i<=n;i++)
#define per1(i,n) for(int i=n;i>=1;i--)
#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)
#define all(v) (v).begin(),(v).end()
typedef pair<ll, ll> LP;
typedef double ld;
typedef pair<ld, ld> LDP;
const ld eps = 1e-12;
const ld pi = acos(-1.0);
ll mod_pow(ll x, ll n, ll m = mod) {
ll res = 1;
while (n) {
if (n & 1)res = res * x % m;
x = x * x % m; n >>= 1;
}
return res;
}
struct modint {
ll n;
modint() :n(0) { ; }
modint(ll m) :n(m) {
if (n >= mod)n %= mod;
else if (n < 0)n = (n % mod + mod) % mod;
}
operator int() { return n; }
};
bool operator==(modint a, modint b) { return a.n == b.n; }
modint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }
modint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }
modint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }
modint operator+(modint a, modint b) { return a += b; }
modint operator-(modint a, modint b) { return a -= b; }
modint operator*(modint a, modint b) { return a *= b; }
modint operator^(modint a, ll n) {
if (n == 0)return modint(1);
modint res = (a * a) ^ (n / 2);
if (n % 2)res = res * a;
return res;
}
ll inv(ll a, ll p) {
return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);
}
modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }
ll gcd(ll a, ll b) {
if (a < b)swap(a, b);
while (b) {
ll r = a % b; a = b; b = r;
}
return a;
}
bool comp(LP a, LP b) {
return a.first / (ld)a.second < b.first / (ld)b.second;
}
void solve() {
ll t1, t2, t3; cin >> t1 >> t2 >> t3;
vector<LP> vs;
rep(i, 2)rep(j, 2) {
ll a1, b1, a2, b2;
a1 = t1 * t2;
a2 = t1 * t3;
if (i == 0) {
b1 = t1 + t2;
}
else {
b1 = t2 - t1;
}
if (j == 0) {
b2 = t1 + t3;
}
else {
b2 = t3 - t1;
}
ll x = a1 * b2;
ll y = a2 * b1;
ll g = gcd(x, y);
ll ans1 = x / g * y;
ll ans2 = b1 * b2;
g = gcd(ans1, ans2);
ans1 /= g, ans2 /= g;
vs.push_back({ ans1,ans2 });
//cout << ans1 << " " << ans2 << "\n";
}
sort(all(vs),comp);
cout << vs[0].first << "/" << vs[0].second << "\n";
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(0);
//cout << fixed << setprecision(15);
//init_f();
//init();
//expr();
//int t; cin >> t; rep(i, t)
solve();
return 0;
}
heno239