結果
| 問題 |
No.1073 無限すごろく
|
| コンテスト | |
| ユーザー |
rokahikou1
|
| 提出日時 | 2020-08-16 22:01:41 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 3 ms / 2,000 ms |
| コード長 | 5,699 bytes |
| コンパイル時間 | 1,000 ms |
| コンパイル使用メモリ | 101,420 KB |
| 実行使用メモリ | 5,248 KB |
| 最終ジャッジ日時 | 2024-10-11 10:43:33 |
| 合計ジャッジ時間 | 2,396 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 30 |
ソースコード
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include <vector>
using namespace std;
#define rep(i, n) for(int(i) = 0; (i) < (n); (i)++)
#define FOR(i, m, n) for(int(i) = (m); (i) < (n); (i)++)
#define All(v) (v).begin(), (v).end()
#define pb push_back
#define MP(a, b) make_pair((a), (b))
using ll = long long;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
const int INF = 1 << 30;
const ll LINF = 1LL << 60;
const int MOD = 1e9 + 7;
#include <cassert>
// 参考:https://ei1333.github.io/luzhiled/snippets/math/matrix.html
// (掛け算と累乗)https://yukicoder.me/submissions/523126
// 他は知らん
template <class T> struct Matrix {
vector<vector<T>> A;
Matrix() {}
Matrix(size_t n, size_t m) : A(n, vector<T>(m, 0)) {}
Matrix(size_t n) : A(n, vector<T>(n, 0)) {}
size_t height() const { return A.size(); }
size_t width() const { return A[0].size(); }
inline vector<T> &operator[](int k) { return A.at(k); }
inline const vector<T> &operator[](int k) const { return A.at(k); }
static Matrix I(size_t n) {
Matrix mat(n);
for(int i = 0; i < n; i++)
mat[i][i] = 1;
return mat;
}
Matrix &operator+=(const Matrix &B) {
size_t h = height(), w = width();
assert(h == B.height() && w == B.width);
for(int i = 0; i < h; i++) {
for(int j = 0; j < w; j++) {
(*this)[i][j] += B[i][j];
}
}
return *this;
}
Matrix &operator-=(const Matrix &B) {
size_t h = height(), w = width();
assert(h == B.height() && w == B.width);
for(int i = 0; i < h; i++) {
for(int j = 0; j < w; j++) {
(*this)[i][j] -= B[i][j];
}
}
return *this;
}
Matrix &operator*=(const Matrix &B) {
size_t h = height(), w = B.width(), p = width();
assert(p == B.height());
vector<vector<T>> C(h, vector<T>(w, 0));
for(int i = 0; i < h; i++) {
for(int j = 0; j < w; j++) {
for(int k = 0; k < p; k++) {
C[i][j] += (*this)[i][k] * B[k][j];
}
}
}
A.swap(C);
return *this;
}
Matrix &operator^=(ll k) {
Matrix B = Matrix::I(height());
while(k > 0) {
if(k & 1)
B *= *this;
*this *= *this;
k >>= 1LL;
}
A.swap(B.A);
return *this;
}
Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); }
Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); }
Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); }
Matrix operator^(const ll k) const { return (Matrix(*this) ^= k); }
friend ostream &operator<<(ostream &os, const Matrix &p) {
size_t h = p.height(), w = p.width();
for(int i = 0; i < h; i++) {
os << "[";
for(int j = 0; j < w; j++) {
os << p[i][j] << (j + 1 == w ? "]\n" : ",");
}
}
return os;
}
};
template <uint_fast64_t MOD> class ModInt {
using u64 = uint_fast64_t;
public:
u64 val;
ModInt(const u64 x = 0) : val((x + MOD) % MOD) {}
constexpr u64 &value() { return val; }
constexpr ModInt operator-() { return val ? MOD - val : 0; }
constexpr ModInt operator+(const ModInt &rhs) const {
return ModInt(*this) += rhs;
}
constexpr ModInt operator-(const ModInt &rhs) const {
return ModInt(*this) -= rhs;
}
constexpr ModInt operator*(const ModInt &rhs) const {
return ModInt(*this) *= rhs;
}
constexpr ModInt operator/(const ModInt &rhs) const {
return ModInt(*this) /= rhs;
}
constexpr ModInt &operator+=(const ModInt &rhs) {
val += rhs.val;
if(val >= MOD) {
val -= MOD;
}
return *this;
}
constexpr ModInt &operator-=(const ModInt &rhs) {
if(val < rhs.val) {
val += MOD;
}
val -= rhs.val;
return *this;
}
constexpr ModInt &operator*=(const ModInt &rhs) {
val = val * rhs.val % MOD;
return *this;
}
constexpr ModInt &operator/=(const ModInt &rhs) {
*this *= rhs.inv();
return *this;
}
constexpr bool operator==(const ModInt &rhs) { return this->a == rhs.a; }
constexpr bool operator!=(const ModInt &rhs) { return this->a != rhs.a; }
friend constexpr ostream &operator<<(ostream &os, const ModInt<MOD> &x) {
return os << x.val;
}
friend constexpr istream &operator>>(istream &is, ModInt<MOD> &x) {
return is >> x.val;
}
constexpr ModInt inv() const { return ModInt(*this).pow(MOD - 2); }
constexpr ModInt pow(ll e) const {
u64 x = 1, p = val;
while(e > 0) {
if(e % 2 == 0) {
p = (p * p) % MOD;
e /= 2;
} else {
x = (x * p) % MOD;
e--;
}
}
return ModInt(x);
}
};
using mint = ModInt<MOD>;
int main() {
ll N;
cin >> N;
Matrix<mint> mat(6, 6), base(6, 1);
for(int i = 0; i < 6; i++) {
for(int j = 0; j < 6; j++) {
if(i == 5) {
mat[i][j] = mint(6).inv();
} else if(j == i + 1) {
mat[i][j] = 1;
}
}
}
base[5][0] = 1;
auto res = ((mat ^ N) * base);
cout << res[5][0] << endl;
return 0;
}
rokahikou1