結果

問題 No.1195 数え上げを愛したい(文字列編)
ユーザー sanada_atcodersanada_atcoder
提出日時 2020-08-17 22:08:58
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 705 ms / 3,000 ms
コード長 6,350 bytes
コンパイル時間 1,445 ms
コンパイル使用メモリ 129,504 KB
実行使用メモリ 31,080 KB
最終ジャッジ日時 2024-10-11 11:21:52
合計ジャッジ時間 12,152 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 703 ms
31,080 KB
testcase_01 AC 705 ms
30,968 KB
testcase_02 AC 703 ms
31,076 KB
testcase_03 AC 69 ms
14,432 KB
testcase_04 AC 85 ms
14,204 KB
testcase_05 AC 88 ms
27,028 KB
testcase_06 AC 5 ms
8,064 KB
testcase_07 AC 5 ms
8,192 KB
testcase_08 AC 116 ms
10,960 KB
testcase_09 AC 671 ms
30,940 KB
testcase_10 AC 378 ms
19,608 KB
testcase_11 AC 626 ms
30,864 KB
testcase_12 AC 568 ms
28,580 KB
testcase_13 AC 475 ms
19,600 KB
testcase_14 AC 294 ms
19,492 KB
testcase_15 AC 359 ms
19,564 KB
testcase_16 AC 321 ms
18,496 KB
testcase_17 AC 121 ms
11,104 KB
testcase_18 AC 584 ms
28,716 KB
testcase_19 AC 570 ms
28,784 KB
testcase_20 AC 483 ms
19,624 KB
testcase_21 AC 615 ms
30,840 KB
testcase_22 AC 459 ms
19,684 KB
testcase_23 AC 3 ms
8,132 KB
testcase_24 AC 5 ms
8,140 KB
testcase_25 AC 5 ms
8,012 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 2 "/Users/kaage/Desktop/ProgrammingWorkspace/library/other/template.hpp"
#define _CRT_SECURE_NO_WARNINGS
#pragma target("avx")
#pragma optimize("O3")
#pragma optimize("unroll-loops")
#include <algorithm>
#include <bitset>
#include <cassert>
#include <cfloat>
#include <climits>
#include <cmath>
#include <complex>
#include <ctime>
#include <deque>
#include <fstream>
#include <functional>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <list>
#include <map>
#include <memory>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <string>
#include <string.h>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#define rep(i,n) for(int i=0;i<(n);i++)
#define REP(i,n) for(int i=1;i<=(n);i++)
#define all(V) V.begin(),V.end()
typedef long long lint;
typedef unsigned long long ulint;
typedef std::pair<int, int> P;
typedef std::pair<lint, lint> LP;
constexpr int INF = INT_MAX/2;
constexpr lint LINF = LLONG_MAX/2;
constexpr double eps = DBL_EPSILON;
constexpr double PI=3.141592653589793238462643383279;
template<class T>
class prique :public std::priority_queue<T, std::vector<T>, std::greater<T>> {};
template <class T, class U>
inline bool chmax(T& lhs, const U& rhs) {
	if (lhs < rhs) {
		lhs = rhs;
		return 1;
	}
	return 0;
}
template <class T, class U>
inline bool chmin(T& lhs, const U& rhs) {
	if (lhs > rhs) {
		lhs = rhs;
		return 1;
	}
	return 0;
}
inline lint gcd(lint a, lint b) {
	while (b) {
		lint c = a;
		a = b; b = c % b;
	}
	return a;
}
inline lint lcm(lint a, lint b) {
	return a / gcd(a, b) * b;
}
bool isprime(lint n) {
	if (n == 1)return false;
	for (int i = 2; i * i <= n; i++) {
		if (n % i == 0)return false;
	}
	return true;
}
template<typename T>
T mypow(T a, lint b) {
	T res(1);
	while(b){
		if(b&1)res*=a;
		a*=a;
		b>>=1;
	}
	return res;
}
lint modpow(lint a, lint b, lint m) {
	lint res(1);
	while(b){
		if(b&1){
			res*=a;res/=m;
		}
		a*=a;a/=m;
		b>>=1;
	}
	return res;
}
template<typename T>
void printArray(std::vector<T>& vec) {
	rep(i, vec.size()){
		std::cout << vec[i];
		std::cout<<(i==(int)vec.size()-1?"\n":" ");
	}
}
template<typename T>
void printArray(T l, T r) {
	T rprev = std::prev(r);
	for (T i = l; i != rprev; i++) {
		std::cout << *i << " ";
	}
	std::cout << *rprev << std::endl;
}
#line 3 "/Users/kaage/Desktop/ProgrammingWorkspace/library/algebraic/ModInt.hpp"
class ModInt {
	lint value;
public:
	static const unsigned int modulo;
	ModInt() : value(0) {}
	template<typename T>
	ModInt(T value = 0) : value(value) {
		if (value < 0)value = -(lint)(-value % modulo) + modulo;
		this->value = value % modulo;
	}
	inline ModInt inv()const{return mypow(*this,modulo-2);}
	inline operator int()const { return value; }
	inline ModInt& operator+=(const ModInt& x) {
		value += x.value;
		if (value >= modulo)value -= modulo;
		return *this;
	}
	inline ModInt& operator++() {
		if (value == modulo - 1)value = 0;
		else value++;
		return *this;
	}
	inline ModInt operator-()const {
		return ModInt(0) -= *this;
	}
	inline ModInt& operator-=(const ModInt& x) {
		value -= x.value;
		if (value < 0)value += modulo;
		return *this;
	}
	inline ModInt& operator--() {
		if (value == 0)value = modulo - 1;
		else value--;
		return *this;
	}
	inline ModInt& operator*=(const ModInt& x) {
		value = value * x.value % modulo;
		return *this;
	}
	inline ModInt& operator/=(const ModInt& rhs) {
		return *this*=rhs.inv();
	}
	template<typename T> ModInt operator+(const T& rhs)const { return ModInt(*this) += rhs; }
	template<typename T> ModInt& operator+=(const T& rhs) { return operator+=(ModInt(rhs)); }
	template<typename T> ModInt operator-(const T& rhs)const { return ModInt(*this) -= rhs; }
	template<typename T> ModInt& operator-=(const T& rhs) { return operator-=(ModInt(rhs)); }
	template<typename T> ModInt operator*(const T& rhs)const { return ModInt(*this) *= rhs; }
	template<typename T> ModInt& operator*=(const T& rhs) { return operator*=(ModInt(rhs)); }
	template<typename T> ModInt operator/(const T& rhs)const { return ModInt(*this) /= rhs; }
	template<typename T> ModInt& operator/=(const T& rhs) { return operator/=(ModInt(rhs)); }
};
std::istream& operator>>(std::istream& ist, ModInt& x) {
	lint a;
	ist >> a;
	x = a;
	return ist;
}
#line 4 "/Users/kaage/Desktop/ProgrammingWorkspace/library/algebraic/NumberTheoreticTransform.hpp"
//167772161,3,2^25
//469762049,3,2^26
//924844033,5,2^21
//998244353,3,2^23
//1012924417,5
//1224736769,3
const unsigned int ModInt::modulo=998244353;
class NumberTheoreticTransform{
private:
	static void ntt(std::vector<ModInt>& a){
		int sz=a.size();
		if(sz==1)return;
		ModInt root;
		if(inverse)root=mypow(ModInt(3),ModInt::modulo-1-(ModInt::modulo-1)/sz);
		else root=mypow(ModInt(3),(ModInt::modulo-1)/sz);
		std::vector<ModInt> b(sz),roots((sz>>1)+1,1);
		rep(i,sz>>1)roots[i+1]=roots[i]*root;
		for(int i=sz>>1,w=1;w<sz;i>>=1,w<<=1){
			for(int j=0;j<i;j++){
				for(int k=0;k<w;k++){
					b[k+((w*j)<<1)]=a[k+w*j]+a[k+w*j+(sz>>1)];
					b[k+((w*j)<<1)+w]=roots[w*j]*(a[k+w*j]-a[k+w*j+(sz>>1)]);
				}
			}
			std::swap(a,b);
		}
	}
public:
	static bool inverse;
	template<typename T>
	static std::vector<ModInt> multiply(std::vector<T> f, std::vector<T> g) {
		if(f.size()<g.size())std::swap(f,g);
		std::vector<ModInt> nf, ng;
		int sz=1;
		while (sz<f.size()+g.size())sz<<=1;
		nf.resize(sz);ng.resize(sz);
		rep(i,f.size()) {
			nf[i]=f[i];
			if(i<g.size())ng[i]=g[i];
		}
		inverse=false;
		ntt(nf);ntt(ng);
		rep(i, sz)nf[i]*=ng[i];
		inverse=true;
		ntt(nf);
		ModInt szinv=ModInt(sz).inv();
		rep(i,sz)nf[i]*=szinv;
		return nf;
	}
};
bool NumberTheoreticTransform::inverse=false;
#line 4 "main.cpp"
std::string s;
int a[26];
ModInt fact[300010],inv[300010];
int main(){
	std::cin>>s;
	rep(i,s.size())a[s[i]-'a']++;
	std::sort(a,a+26);
	fact[0]=1;
	REP(i,s.size())fact[i]=fact[i-1]*i;
	inv[s.size()]=ModInt(1)/fact[s.size()];
	for(int i=s.size()-1;i>=0;i--)inv[i]=inv[i+1]*(i+1);
	std::vector<ModInt> ans={1};
	rep(i,26){
		if(!a[i])continue;
		std::vector<ModInt> vec(a[i]+1,1);
		rep(j,ans.size())ans[j]*=inv[j];
		rep(j,vec.size())vec[j]*=inv[j];
		ans=NumberTheoreticTransform::multiply(ans,vec);
		while(!ans.back())ans.pop_back();
		rep(j,ans.size())ans[j]*=fact[j];
	}
	ModInt res=0;
	REP(i,ans.size()-1)res+=ans[i];
	std::cout<<res<<std::endl;
}
0