結果
問題 | No.1195 数え上げを愛したい(文字列編) |
ユーザー | sanada_atcoder |
提出日時 | 2020-08-17 22:08:58 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 705 ms / 3,000 ms |
コード長 | 6,350 bytes |
コンパイル時間 | 1,445 ms |
コンパイル使用メモリ | 129,504 KB |
実行使用メモリ | 31,080 KB |
最終ジャッジ日時 | 2024-10-11 11:21:52 |
合計ジャッジ時間 | 12,152 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 703 ms
31,080 KB |
testcase_01 | AC | 705 ms
30,968 KB |
testcase_02 | AC | 703 ms
31,076 KB |
testcase_03 | AC | 69 ms
14,432 KB |
testcase_04 | AC | 85 ms
14,204 KB |
testcase_05 | AC | 88 ms
27,028 KB |
testcase_06 | AC | 5 ms
8,064 KB |
testcase_07 | AC | 5 ms
8,192 KB |
testcase_08 | AC | 116 ms
10,960 KB |
testcase_09 | AC | 671 ms
30,940 KB |
testcase_10 | AC | 378 ms
19,608 KB |
testcase_11 | AC | 626 ms
30,864 KB |
testcase_12 | AC | 568 ms
28,580 KB |
testcase_13 | AC | 475 ms
19,600 KB |
testcase_14 | AC | 294 ms
19,492 KB |
testcase_15 | AC | 359 ms
19,564 KB |
testcase_16 | AC | 321 ms
18,496 KB |
testcase_17 | AC | 121 ms
11,104 KB |
testcase_18 | AC | 584 ms
28,716 KB |
testcase_19 | AC | 570 ms
28,784 KB |
testcase_20 | AC | 483 ms
19,624 KB |
testcase_21 | AC | 615 ms
30,840 KB |
testcase_22 | AC | 459 ms
19,684 KB |
testcase_23 | AC | 3 ms
8,132 KB |
testcase_24 | AC | 5 ms
8,140 KB |
testcase_25 | AC | 5 ms
8,012 KB |
ソースコード
#line 2 "/Users/kaage/Desktop/ProgrammingWorkspace/library/other/template.hpp" #define _CRT_SECURE_NO_WARNINGS #pragma target("avx") #pragma optimize("O3") #pragma optimize("unroll-loops") #include <algorithm> #include <bitset> #include <cassert> #include <cfloat> #include <climits> #include <cmath> #include <complex> #include <ctime> #include <deque> #include <fstream> #include <functional> #include <iomanip> #include <iostream> #include <iterator> #include <list> #include <map> #include <memory> #include <queue> #include <random> #include <set> #include <stack> #include <string> #include <string.h> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> #define rep(i,n) for(int i=0;i<(n);i++) #define REP(i,n) for(int i=1;i<=(n);i++) #define all(V) V.begin(),V.end() typedef long long lint; typedef unsigned long long ulint; typedef std::pair<int, int> P; typedef std::pair<lint, lint> LP; constexpr int INF = INT_MAX/2; constexpr lint LINF = LLONG_MAX/2; constexpr double eps = DBL_EPSILON; constexpr double PI=3.141592653589793238462643383279; template<class T> class prique :public std::priority_queue<T, std::vector<T>, std::greater<T>> {}; template <class T, class U> inline bool chmax(T& lhs, const U& rhs) { if (lhs < rhs) { lhs = rhs; return 1; } return 0; } template <class T, class U> inline bool chmin(T& lhs, const U& rhs) { if (lhs > rhs) { lhs = rhs; return 1; } return 0; } inline lint gcd(lint a, lint b) { while (b) { lint c = a; a = b; b = c % b; } return a; } inline lint lcm(lint a, lint b) { return a / gcd(a, b) * b; } bool isprime(lint n) { if (n == 1)return false; for (int i = 2; i * i <= n; i++) { if (n % i == 0)return false; } return true; } template<typename T> T mypow(T a, lint b) { T res(1); while(b){ if(b&1)res*=a; a*=a; b>>=1; } return res; } lint modpow(lint a, lint b, lint m) { lint res(1); while(b){ if(b&1){ res*=a;res/=m; } a*=a;a/=m; b>>=1; } return res; } template<typename T> void printArray(std::vector<T>& vec) { rep(i, vec.size()){ std::cout << vec[i]; std::cout<<(i==(int)vec.size()-1?"\n":" "); } } template<typename T> void printArray(T l, T r) { T rprev = std::prev(r); for (T i = l; i != rprev; i++) { std::cout << *i << " "; } std::cout << *rprev << std::endl; } #line 3 "/Users/kaage/Desktop/ProgrammingWorkspace/library/algebraic/ModInt.hpp" class ModInt { lint value; public: static const unsigned int modulo; ModInt() : value(0) {} template<typename T> ModInt(T value = 0) : value(value) { if (value < 0)value = -(lint)(-value % modulo) + modulo; this->value = value % modulo; } inline ModInt inv()const{return mypow(*this,modulo-2);} inline operator int()const { return value; } inline ModInt& operator+=(const ModInt& x) { value += x.value; if (value >= modulo)value -= modulo; return *this; } inline ModInt& operator++() { if (value == modulo - 1)value = 0; else value++; return *this; } inline ModInt operator-()const { return ModInt(0) -= *this; } inline ModInt& operator-=(const ModInt& x) { value -= x.value; if (value < 0)value += modulo; return *this; } inline ModInt& operator--() { if (value == 0)value = modulo - 1; else value--; return *this; } inline ModInt& operator*=(const ModInt& x) { value = value * x.value % modulo; return *this; } inline ModInt& operator/=(const ModInt& rhs) { return *this*=rhs.inv(); } template<typename T> ModInt operator+(const T& rhs)const { return ModInt(*this) += rhs; } template<typename T> ModInt& operator+=(const T& rhs) { return operator+=(ModInt(rhs)); } template<typename T> ModInt operator-(const T& rhs)const { return ModInt(*this) -= rhs; } template<typename T> ModInt& operator-=(const T& rhs) { return operator-=(ModInt(rhs)); } template<typename T> ModInt operator*(const T& rhs)const { return ModInt(*this) *= rhs; } template<typename T> ModInt& operator*=(const T& rhs) { return operator*=(ModInt(rhs)); } template<typename T> ModInt operator/(const T& rhs)const { return ModInt(*this) /= rhs; } template<typename T> ModInt& operator/=(const T& rhs) { return operator/=(ModInt(rhs)); } }; std::istream& operator>>(std::istream& ist, ModInt& x) { lint a; ist >> a; x = a; return ist; } #line 4 "/Users/kaage/Desktop/ProgrammingWorkspace/library/algebraic/NumberTheoreticTransform.hpp" //167772161,3,2^25 //469762049,3,2^26 //924844033,5,2^21 //998244353,3,2^23 //1012924417,5 //1224736769,3 const unsigned int ModInt::modulo=998244353; class NumberTheoreticTransform{ private: static void ntt(std::vector<ModInt>& a){ int sz=a.size(); if(sz==1)return; ModInt root; if(inverse)root=mypow(ModInt(3),ModInt::modulo-1-(ModInt::modulo-1)/sz); else root=mypow(ModInt(3),(ModInt::modulo-1)/sz); std::vector<ModInt> b(sz),roots((sz>>1)+1,1); rep(i,sz>>1)roots[i+1]=roots[i]*root; for(int i=sz>>1,w=1;w<sz;i>>=1,w<<=1){ for(int j=0;j<i;j++){ for(int k=0;k<w;k++){ b[k+((w*j)<<1)]=a[k+w*j]+a[k+w*j+(sz>>1)]; b[k+((w*j)<<1)+w]=roots[w*j]*(a[k+w*j]-a[k+w*j+(sz>>1)]); } } std::swap(a,b); } } public: static bool inverse; template<typename T> static std::vector<ModInt> multiply(std::vector<T> f, std::vector<T> g) { if(f.size()<g.size())std::swap(f,g); std::vector<ModInt> nf, ng; int sz=1; while (sz<f.size()+g.size())sz<<=1; nf.resize(sz);ng.resize(sz); rep(i,f.size()) { nf[i]=f[i]; if(i<g.size())ng[i]=g[i]; } inverse=false; ntt(nf);ntt(ng); rep(i, sz)nf[i]*=ng[i]; inverse=true; ntt(nf); ModInt szinv=ModInt(sz).inv(); rep(i,sz)nf[i]*=szinv; return nf; } }; bool NumberTheoreticTransform::inverse=false; #line 4 "main.cpp" std::string s; int a[26]; ModInt fact[300010],inv[300010]; int main(){ std::cin>>s; rep(i,s.size())a[s[i]-'a']++; std::sort(a,a+26); fact[0]=1; REP(i,s.size())fact[i]=fact[i-1]*i; inv[s.size()]=ModInt(1)/fact[s.size()]; for(int i=s.size()-1;i>=0;i--)inv[i]=inv[i+1]*(i+1); std::vector<ModInt> ans={1}; rep(i,26){ if(!a[i])continue; std::vector<ModInt> vec(a[i]+1,1); rep(j,ans.size())ans[j]*=inv[j]; rep(j,vec.size())vec[j]*=inv[j]; ans=NumberTheoreticTransform::multiply(ans,vec); while(!ans.back())ans.pop_back(); rep(j,ans.size())ans[j]*=fact[j]; } ModInt res=0; REP(i,ans.size()-1)res+=ans[i]; std::cout<<res<<std::endl; }