結果
| 問題 |
No.1164 GCD Products hard
|
| ユーザー |
|
| 提出日時 | 2020-08-18 06:20:00 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 245 ms / 2,500 ms |
| コード長 | 4,172 bytes |
| コンパイル時間 | 813 ms |
| コンパイル使用メモリ | 75,668 KB |
| 最終ジャッジ日時 | 2025-01-13 02:49:54 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 27 |
ソースコード
#include <iostream>
#include <vector>
template <int MOD>
struct ModInt {
using lint = long long;
int val;
// constructor
ModInt(lint v = 0) : val(v % MOD) {
if (val < 0) val += MOD;
};
// unary operator
ModInt operator+() const { return ModInt(val); }
ModInt operator-() const { return ModInt(MOD - val); }
ModInt inv() const { return this->pow(MOD - 2); }
// arithmetic
ModInt operator+(const ModInt& x) const { return ModInt(*this) += x; }
ModInt operator-(const ModInt& x) const { return ModInt(*this) -= x; }
ModInt operator*(const ModInt& x) const { return ModInt(*this) *= x; }
ModInt operator/(const ModInt& x) const { return ModInt(*this) /= x; }
ModInt pow(lint n) const {
auto x = ModInt(1);
auto b = *this;
while (n > 0) {
if (n & 1) x *= b;
n >>= 1;
b *= b;
}
return x;
}
// compound assignment
ModInt& operator+=(const ModInt& x) {
if ((val += x.val) >= MOD) val -= MOD;
return *this;
}
ModInt& operator-=(const ModInt& x) {
if ((val -= x.val) < 0) val += MOD;
return *this;
}
ModInt& operator*=(const ModInt& x) {
val = lint(val) * x.val % MOD;
return *this;
}
ModInt& operator/=(const ModInt& x) { return *this *= x.inv(); }
// compare
bool operator==(const ModInt& b) const { return val == b.val; }
bool operator!=(const ModInt& b) const { return val != b.val; }
bool operator<(const ModInt& b) const { return val < b.val; }
bool operator<=(const ModInt& b) const { return val <= b.val; }
bool operator>(const ModInt& b) const { return val > b.val; }
bool operator>=(const ModInt& b) const { return val >= b.val; }
// I/O
friend std::istream& operator>>(std::istream& is, ModInt& x) noexcept {
lint v;
is >> v;
x = v;
return is;
}
friend std::ostream& operator<<(std::ostream& os, const ModInt& x) noexcept { return os << x.val; }
};
struct Prime {
int max_n;
std::vector<int> primes;
std::vector<bool> isp;
explicit Prime(int max_n)
: max_n(max_n), isp(max_n + 1, true) {
isp[0] = isp[1] = false;
for (int i = 2; i * i <= max_n; ++i) {
if (isp[i]) {
for (int j = i; i * j <= max_n; ++j) {
isp[i * j] = false;
}
}
}
for (int p = 2; p <= max_n; ++p) {
if (isp[p]) primes.push_back(p);
}
}
template <class T>
bool isprime(T n) const {
if (n <= max_n) return isp[n];
for (T p : primes) {
if (p * p > n) break;
if (n % p == 0) return false;
}
return true;
}
template <class T>
std::vector<std::pair<T, int>> factorize(T n) const {
std::vector<std::pair<T, int>> facts;
for (T p : primes) {
if (p * p > n) break;
if (n % p != 0) continue;
int exp = 0;
while (n % p == 0) {
n /= p;
++exp;
}
facts.emplace_back(p, exp);
}
if (n > 1) {
facts.emplace_back(n, 1);
}
return facts;
}
template <class T>
static std::vector<T> divisors(T n) {
std::vector<T> ret;
for (T p = 1; p * p <= n; ++p) {
if (n % p != 0) continue;
ret.push_back(p);
if (n / p == p) continue;
ret.push_back(n / p);
}
return ret;
}
};
constexpr int MOD = 1000000007;
using mint = ModInt<MOD>;
using smint = ModInt<MOD - 1>;
using lint = long long;
void solve() {
int l, r, n;
std::cin >> l >> r >> n;
auto ps = Prime(r).primes;
mint ans = 1;
for (auto p : ps) {
for (lint g = p; g <= r; g *= p) {
smint pat = smint(r / g - (l - 1) / g).pow(n);
ans *= mint(p).pow(pat.val);
}
}
std::cout << ans << "\n";
}
int main() {
std::cin.tie(nullptr);
std::ios::sync_with_stdio(false);
solve();
return 0;
}