結果
| 問題 |
No.659 徘徊迷路
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2020-08-18 10:54:52 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 4,919 bytes |
| コンパイル時間 | 1,295 ms |
| コンパイル使用メモリ | 96,164 KB |
| 最終ジャッジ日時 | 2025-01-13 02:56:27 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 5 |
| other | AC * 5 TLE * 7 |
ソースコード
#include <iostream>
#include <iomanip>
#include <algorithm>
#include <vector>
template <class T>
struct Vector {
using V = std::vector<T>;
int d;
V vec;
// constructor
Vector(int d, T val = 0) : d(d), vec(d, val) {}
// getter
T& operator[](int i) { return vec[i]; }
T operator[](int i) const { return vec[i]; }
typename V::iterator begin() { return vec.begin(); }
typename V::iterator end() { return vec.end(); }
// arithmetic
Vector operator+(const Vector& v) const { return Vector(*this) += v; }
Vector operator-(const Vector& v) const { return Vector(*this) -= v; }
T operator*(const Vector& v) const {
T ret(0);
for (int i = 0; i < d; ++i) ret += vec[i] * v[i];
return ret;
}
// compound assignment
Vector& operator+=(const Vector& v) {
for (int i = 0; i < d; ++i) vec[i] += v[i];
return *this;
}
Vector& operator-=(const Vector& v) {
for (int i = 0; i < d; ++i) vec[i] -= v[i];
return *this;
}
};
template <class T>
struct Matrix {
using M = std::vector<std::vector<T>>;
int h, w;
M mat;
// constructor
Matrix(int h, int w, T val = 0)
: h(h), w(w), mat(h, std::vector<T>(w, val)) {}
static Matrix id(int n) {
Matrix m(n, n);
for (int i = 0; i < n; ++i) m[i][i] = 1;
return m;
}
// getter
std::vector<T>& operator[](int i) { return mat[i]; }
std::vector<T> operator[](int i) const { return mat[i]; }
typename M::iterator begin() { return mat.begin(); }
typename M::iterator end() { return mat.end(); }
// arithmetic
Matrix operator+(const Matrix& m) const { return Matrix(*this) += m; }
Matrix operator-(const Matrix& m) const { return Matrix(*this) -= m; }
Matrix operator*(const Matrix& m) const { return Matrix(*this) *= m; }
template <class U>
Matrix pow(U k) {
Matrix ret = id(h);
Matrix a = *this;
while (k > 0) {
if (k & 1) ret *= a;
a *= a;
k >>= 1;
}
return ret;
}
// compound assignment
Matrix& operator+=(const Matrix& m) {
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
mat[i][j] += m[i][j];
}
}
return *this;
}
Matrix& operator-=(const Matrix& m) {
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
mat[i][j] -= m[i][j];
}
}
return *this;
}
Matrix& operator*=(const Matrix& m) {
std::vector<std::vector<T>> nmat(h, std::vector<T>(m.w, T(0)));
for (int i = 0; i < h; ++i) {
for (int j = 0; j < m.w; ++j) {
for (int k = 0; k < w; ++k) {
nmat[i][j] += mat[i][k] * m[k][j];
}
}
}
mat = nmat;
return *this;
}
// arithmetic with vector
using Vec = Vector<T>;
Vec operator*(const Vec& v) {
Vec ret(h, 0);
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
ret[i] += mat[i][j] * v[j];
}
}
return ret;
}
};
using ldouble = long double;
using Vec = Vector<ldouble>;
using Mat = Matrix<ldouble>;
const std::vector<std::pair<int, int>>
dxys{{0, 1}, {0, -1}, {1, 0}, {-1, 0}};
void solve() {
int h, w, t;
std::cin >> h >> w >> t;
int nn = h * w;
auto enc = [&](int x, int y) { return x * w + y; };
Vec sv(nn), gv(nn);
{
int sx, sy, gx, gy;
std::cin >> sx >> sy >> gx >> gy;
sv[enc(sx, sy)] = 1;
gv[enc(gx, gy)] = 1;
}
std::vector<std::string> ss(h);
for (auto& s : ss) std::cin >> s;
Mat m(nn, nn);
for (int x = 0; x < h; ++x) {
for (int y = 0; y < w; ++y) {
if (ss[x][y] == '#') continue;
int adj = 0;
for (auto [dx, dy] : dxys) {
int nx = x + dx,
ny = y + dy;
if (nx < 0 || h <= nx ||
ny < 0 || w <= ny ||
ss[nx][ny] == '#') continue;
++adj;
}
if (adj == 0) {
m[enc(x, y)][enc(x, y)] = 1;
continue;
}
ldouble p = 1. / adj;
for (auto [dx, dy] : dxys) {
int nx = x + dx,
ny = y + dy;
if (nx < 0 || h <= nx ||
ny < 0 || w <= ny ||
ss[nx][ny] == '#') continue;
m[enc(nx, ny)][enc(x, y)] = p;
}
}
}
m = m.pow(t);
std::cout << (m * sv) * gv << "\n";
}
int main() {
std::cin.tie(nullptr);
std::ios::sync_with_stdio(false);
std::cout << std::fixed << std::setprecision(10);
solve();
return 0;
}