結果

問題 No.614 壊れたキャンパス
ユーザー Mister
提出日時 2020-08-18 20:48:34
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 1,576 ms / 2,000 ms
コード長 3,397 bytes
コンパイル時間 1,881 ms
コンパイル使用メモリ 125,884 KB
最終ジャッジ日時 2025-01-13 03:27:58
ジャッジサーバーID
(参考情報)
judge3 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 20
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <map>
#include <tuple>
#include <limits>
template <class T>
using MinHeap = std::priority_queue<T, std::vector<T>, std::greater<T>>;
template <class T>
std::map<T, int> compress(std::vector<T>& v) {
std::sort(v.begin(), v.end());
v.erase(std::unique(v.begin(), v.end()), v.end());
std::map<T, int> rev;
for (int i = 0; i < (int)v.size(); ++i) rev[v[i]] = i;
return rev;
}
template <class Cost = int>
struct Edge {
int src, dst;
Cost cost;
Edge(int src = -1, int dst = -1, Cost cost = 1)
: src(src), dst(dst), cost(cost){};
bool operator<(const Edge<Cost>& e) const { return this->cost < e.cost; }
bool operator>(const Edge<Cost>& e) const { return this->cost > e.cost; }
};
template <class Cost = int>
struct Graph {
std::vector<std::vector<Edge<Cost>>> graph;
Graph(int n = 0) : graph(n) {}
void span(bool direct, int src, int dst, Cost cost = 1) {
graph[src].emplace_back(src, dst, cost);
if (!direct) graph[dst].emplace_back(dst, src, cost);
}
int size() const { return graph.size(); }
void clear() { graph.clear(); }
void resize(int n) { graph.resize(n); }
std::vector<Edge<Cost>>& operator[](int v) { return graph[v]; }
std::vector<Edge<Cost>> operator[](int v) const { return graph[v]; }
};
template <class Cost>
std::vector<Cost> dijkstra(const Graph<Cost>& graph, int s) {
std::vector<Cost> dist(graph.size(), -1);
dist[s] = 0;
MinHeap<std::pair<Cost, int>> que;
que.emplace(0, s);
while (!que.empty()) {
int v;
Cost d;
std::tie(d, v) = que.top();
que.pop();
if (d > dist[v]) continue;
for (const auto& e : graph[v]) {
if (dist[e.dst] != -1 &&
dist[e.dst] <= dist[v] + e.cost) continue;
dist[e.dst] = dist[v] + e.cost;
que.emplace(dist[e.dst], e.dst);
}
}
return dist;
}
using lint = long long;
void solve() {
int n, m, k, s, t;
std::cin >> n >> m >> k >> s >> t;
--s, --t;
auto enc = [&](int x, int y) { return x + lint(y) * n; };
std::vector<std::pair<lint, lint>> es;
std::vector<std::vector<int>> yss(n);
yss[0].push_back(s);
yss[n - 1].push_back(t);
while (m--) {
int x, y1, y2;
std::cin >> x >> y1 >> y2;
--x, --y1, --y2;
yss[x].push_back(y1);
yss[x + 1].push_back(y2);
es.emplace_back(enc(x, y1), enc(x + 1, y2));
}
std::vector<lint> vs;
for (int x = 0; x < n; ++x) {
auto& ys = yss[x];
compress(ys);
for (auto y : ys) vs.push_back(enc(x, y));
}
auto vrev = compress(vs);
int nn = vs.size();
Graph<lint> graph(nn);
for (auto [u, v] : es) graph.span(true, vrev[u], vrev[v], 0);
for (int x = 0; x < n; ++x) {
auto& ys = yss[x];
int l = ys.size();
for (int i = 0; i + 1 < l; ++i) {
int u = vrev[enc(x, ys[i])],
v = vrev[enc(x, ys[i + 1])];
graph.span(false, u, v, ys[i + 1] - ys[i]);
}
}
auto ds = dijkstra(graph, vrev[enc(0, s)]);
auto ans = ds[vrev[enc(n - 1, t)]];
std::cout << ans << "\n";
}
int main() {
std::cin.tie(nullptr);
std::ios::sync_with_stdio(false);
solve();
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0