結果

問題 No.811 約数の個数の最大化
ユーザー 双六双六
提出日時 2020-08-19 18:12:01
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 203 ms / 2,000 ms
コード長 1,899 bytes
コンパイル時間 209 ms
コンパイル使用メモリ 82,560 KB
実行使用メモリ 77,184 KB
最終ジャッジ日時 2024-10-12 05:07:39
合計ジャッジ時間 2,908 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 12
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

# import sys; input = sys.stdin.buffer.readline
# sys.setrecursionlimit(10**7)
from collections import defaultdict
con = 10 ** 9 + 7; INF = float("inf")
def getlist():
return list(map(int, input().split()))
def gcd(a, b):
while b:
a, b = b, a % b
return a
def isPrimeMR(N):
d = N - 1
d = d // (d & -d)
# L=[2,3,61]
L = [2]
for a in L:
t = d
y = pow(a, t, N)
if y == 1:
continue
while y != N - 1:
y = (y * y) % N
if y == 1 or t == N - 1:
return 0
return 1
def findFactorRho(N):
m = 1 << N.bit_length() // 8
for c in range(1, 99):
f = lambda x: (x * x + c) % N
y, r, q, g = 2, 1, 1, 1
while g == 1:
x = y
for i in range(r):
y = f(y)
k = 0
while k < r and g == 1:
ys = y
for i in range(min(m, r - k)):
y = f(y)
q = q * abs(x - y) % N
g = gcd(q, N)
k += m
r <<= 1
if g == N:
g = 1
while g == 1:
ys = f(ys)
g = gcd(abs(x - ys), N)
if g < N:
if isPrimeMR(g):
return g
elif isPrimeMR(N // g):
return N // g
return findFactorRho(g)
def primeFactor(N):
i = 2
ret = defaultdict(int)
rhoFlg = 0
while i * i <= N:
k = 0
while N % i == 0:
N //= i
k += 1
if k:
ret[i] = k
i += 1 + i % 2
if i == 101 and N >= 2 ** 20:
while N > 1:
if isPrimeMR(N):
ret[N], N = 1, 1
else:
rhoFlg = 1
j = findFactorRho(N)
k = 0
while N % j == 0:
N //= j
k += 1
ret[j] = k
if N > 1:
ret[N] = 1
if rhoFlg:
ret = {x: ret[x] for x in sorted(ret)}
return ret
#
def main():
N, K = getlist()
D = primeFactor(N)
ans = INF
val = 0
for i in range(N - 1, 0, -1):
d = primeFactor(i)
fac_cnt = 0
for j in d:
fac_cnt += min(d[j], D[j])
if fac_cnt >= K:
divnum = 1
for j in d:
divnum *= d[j] + 1
if divnum >= val:
ans = i
val = divnum
print(ans)
if __name__ == '__main__':
main()
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0