結果

問題 No.1212 Second Path
ユーザー Thistle
提出日時 2020-08-20 01:24:31
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 1,359 ms / 3,000 ms
コード長 18,026 bytes
コンパイル時間 4,009 ms
コンパイル使用メモリ 186,060 KB
実行使用メモリ 154,280 KB
最終ジャッジ日時 2024-11-14 23:25:30
合計ジャッジ時間 49,056 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 45
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#pragma GCC target ("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#define _USE_MATH_DEFINES
#include<iostream>
#include<string>
#include<queue>
#include<cmath>
#include<map>
#include<set>
#include<list>
#include<iomanip>
#include<vector>
#include<random>
#include<functional>
#include<algorithm>
#include<stack>
#include<cstdio>
#include<cstring>
#include<bitset>
#include<unordered_set>
#include<unordered_map>
#include<climits>
#include<fstream>
#include<complex>
#include<time.h>
#include<cassert>
#include<functional>
#include<numeric>
#include<tuple>
using namespace std;
using ll = long long;
using ld = long double;
#define all(a) (a).begin(),(a).end()
#define fs first
#define sc second
#define xx first
#define yy second.first
#define zz second.second
#define H pair<ll, ll>
#define P pair<ll, pair<ll, ll>>
#define Q(i,j,k) mkp(i,mkp(j,k))
#define rng(i,s,n) for(ll i = (s) ; i < (n) ; i++)
#define rep(i,n) rng(i, 0, (n))
#define mkp make_pair
#define vec vector
#define vi vec<ll>
#define pb emplace_back
#define siz(a) (int)(a).size()
#define crdcomp(b) sort(all((b)));(b).erase(unique(all((b))),(b).end())
#define getidx(b,i) (lower_bound(all(b),(i))-(b).begin())
#define ssp(i,n) (i==(ll)(n)-1?"\n":" ")
#define ctoi(c) (int)(c-'0')
#define itoc(c) (char)(c+'0')
#define cyes printf("Yes\n")
#define cno printf("No\n")
#define cdf(n) for(int quetimes_=(n);quetimes_>0;quetimes_--)
#define gcj printf("Case #%lld: ",qq123_+1)
#define readv(a,n) a.resize(n,0);rep(i,(n)) a[i]=read()
#define found(a,x) (a.find(x)!=a.end())
constexpr ll mod = (ll)1e9 + 7;
constexpr ll Mod = 998244353;
constexpr ld EPS = 1e-10;
constexpr ll inf = (ll)3 * 1e18;
constexpr int Inf = (ll)15 * 1e8;
constexpr int dx[] = { -1,1,0,0 }, dy[] = { 0,0,-1,1 };
template<class T>bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; }
template<class T>bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; }
ll read() { ll u, k = scanf("%lld", &u); return u; }
string reads() { string s; cin >> s; return s; }
H readh(short g = 0) { H u; int k = scanf("%lld %lld", &u.fs, &u.sc); if (g == 1) u.fs--, u.sc--; if (g == 2) u.fs--; return u; }
bool ina(H t, int h, int w) { return 0 <= t.fs && t.fs < h && 0 <= t.sc && t.sc < w; }
bool ina(int t, int l, int r) { return l <= t && t < r; }
ll gcd(ll i, ll j) { return j ? gcd(j, i % j) : i; }
ll popcount(ll x) {
int sum = 0; for (int i = 0; i < 60; i++)if ((1ll << i) & x) sum++;
return sum;
}
template<typename T>
class csum {
vec<T> v;
public:
csum(vec<T>& a) :v(a) { build(); }
csum() {}
void init(vec<T>& a) { v = a; build(); }
void build() {
for (int i = 1; i < v.size(); i++) v[i] += v[i - 1];
}
T a(int l, int r) {
if (r < l) return 0;
return v[r] - (l == 0 ? 0 : v[l - 1]);
}//[l,r]
T b(int l, int r) {
return a(l, r - 1);
}//[l,r)
T a(pair<int, int>t) {
return a(t.first, t.second);
}
T b(pair<int, int>t) {
return b(t.first, t.second);
}
};
class mint {
public:ll v;
mint(ll v = 0) { s(v % mod + mod); }
constexpr static int mod = (ll)1e9 + 7;
constexpr static int fn_ = (ll)2e6 + 5;
static mint fact[fn_], comp[fn_];
mint pow(int x) const {
mint b(v), c(1);
while (x) {
if (x & 1) c *= b;
b *= b;
x >>= 1;
}
return c;
}
inline mint& s(int vv) {
v = vv < mod ? vv : vv - mod;
return *this;
}
inline mint inv()const { return pow(mod - 2); }
inline mint operator-()const { return mint() - *this; }
inline mint& operator+=(const mint b) { return s(v + b.v); }
inline mint& operator-=(const mint b) { return s(v + mod - b.v); }
inline mint& operator*=(const mint b) { v = v * b.v % mod; return *this; }
inline mint& operator/=(const mint b) { v = v * b.inv().v % mod; return *this; }
inline mint operator+(const mint b) const { return mint(v) += b; }
inline mint operator-(const mint b) const { return mint(v) -= b; }
inline mint operator*(const mint b) const { return mint(v) *= b; }
inline mint operator/(const mint b) const { return mint(v) /= b; }
friend ostream& operator<<(ostream& os, const mint& m) {
return os << m.v;
}
friend istream& operator>>(istream& is, mint& m) {
int x; is >> x; m = mint(x);
return is;
}
bool operator<(const mint& r)const { return v < r.v; }
bool operator>(const mint& r)const { return v > r.v; }
bool operator<=(const mint& r)const { return v <= r.v; }
bool operator>=(const mint& r)const { return v >= r.v; }
bool operator==(const mint& r)const { return v == r.v; }
bool operator!=(const mint& r)const { return v != r.v; }
explicit operator bool()const { return v; }
explicit operator int()const { return v; }
mint comb(mint k) {
if (k > * this) return mint();
if (!fact[0]) combinit();
if (v >= fn_) {
if (k > * this - k) k = *this - k;
mint tmp(1);
for (int i = v; i >= v - k.v + 1; i--) tmp *= mint(i);
return tmp * comp[k.v];
}
return fact[v] * comp[k.v] * comp[v - k.v];
}//nCk
mint perm(mint k) {
if (k > * this) return mint();
if (!fact[0]) combinit();
if (v >= fn_) {
mint tmp(1);
for (int i = v; i >= v - k.v + 1; i--) tmp *= mint(i);
return tmp;
}
return fact[v] * comp[v - k.v];
}//nPk
static void combinit() {
fact[0] = 1;
for (int i = 1; i < fn_; i++) fact[i] = fact[i - 1] * mint(i);
comp[fn_ - 1] = fact[fn_ - 1].inv();
for (int i = fn_ - 2; i >= 0; i--) comp[i] = comp[i + 1] * mint(i + 1);
}
}; mint mint::fact[fn_], mint::comp[fn_];
//--------------------------------------------------------------
auto RUQ = [](ll& num, ll x, int width) {num = x; };
auto RAQ = [](ll& num, ll x, int width) {num += x; };
auto RCMXQ = [](ll& num, ll x, int width) {num = max(num, x); };
auto RCMNQ = [](ll& num, ll x, int width) {num = min(num, x); };
auto RASQ = [](ll& num, ll x, int width) {num += (x * width); };
auto RUSQ = [](ll& num, ll x, int width) {num = (x * width); };
auto RSQ = [](ll x, ll y)->ll {return x + y; };
auto RMXQ = [](ll x, ll y)->ll {return max(x, y); };
auto RMNQ = [](ll x, ll y)->ll {return min(x, y); };
class Segtree {
#define SEG_SIZE 900000
using F = function<void(ll&, ll, int)>;
using T = function<ll(ll, ll)>;
int siz, rr; ll zer, zer2;
ll dat[SEG_SIZE], lazy[SEG_SIZE];
bool updated[SEG_SIZE];
F upd; T qur;
public:
//for update, for query
void init(int size, F update, T query, ll zero, ll zero2) {
siz = size, upd = update, qur = query, zer = zero2, zer2 = zero;
rr = 1; while (rr < size) rr *= 2;
for (int i = 0; i < SEG_SIZE; i++) dat[i] = zer, lazy[i] = zer2, updated[i] = 0;
}
void rmnq(int n) { init(n, RUQ, RMNQ, 0, inf); }
void rmxq(int n) { init(n, RUQ, RMXQ, 0, -inf); }
template<class Iterator>
void build(const Iterator st, const Iterator ed) {
Iterator it = st; int cur = rr - 1;
while (it != ed) dat[cur++] = (*it++);
for (int i = rr - 2; i >= 0; i--)
dat[i] = qur(dat[i * 2 + 1], dat[i * 2 + 2]);
}
void build(vector<ll>v) {
for (int i = 0; i < min((int)v.size(), siz); i++)
dat[i + rr - 1] = v[i];
for (int i = rr - 2; i >= 0; i--)
dat[i] = qur(dat[i * 2 + 1], dat[i * 2 + 2]);
}
void update(int a, int b, ll x) {
update(0, a, b, 0, rr, x);
}
ll query(int a, int b) {
return query(0, a, b, 0, rr);
}
ll lower_bound(int a, int b, function<bool(ll)>comp) {
return lower_bound(0, a, b, 0, rr, comp);
}
ll upper_bound(int a, int b, function<bool(ll)>comp) {
return upper_bound(0, a, b, 0, rr, comp);
}
ll operator[](const int i) {
return query(i, i + 1);
}
private:
void eval(int i, int l, int r) {
if (!updated[i]) return;
if (r - l > 1) {
upd(lazy[i * 2 + 1], lazy[i], 1);
upd(lazy[i * 2 + 2], lazy[i], 1);
updated[i * 2 + 1] = updated[i * 2 + 2] = 1;
}
upd(dat[i], lazy[i], min(r, siz) - l);
lazy[i] = zer2;
updated[i] = 0;
}
void update(int i, int a, int b, int l, int r, ll x) {
eval(i, l, r);
if (b <= l || r <= a) return;
if (a <= l && r <= b) {
upd(lazy[i], x, 1); updated[i] = 1;
eval(i, l, r);
return;
}
update(i * 2 + 1, a, b, l, (l + r) / 2, x);
update(i * 2 + 2, a, b, (l + r) / 2, r, x);
dat[i] = qur(dat[i * 2 + 1], dat[i * 2 + 2]);
}
ll query(int i, int a, int b, int l, int r) {
eval(i, l, r);
if (b <= l || r <= a) return zer;
if (a <= l && r <= b) return dat[i];
return qur(query(i * 2 + 1, a, b, l, (l + r) / 2),
query(i * 2 + 2, a, b, (l + r) / 2, r));
}
ll lower_bound(int i, int a, int b, int l, int r, function<bool(ll)>comp) {
eval(i, l, r);
if (b <= l || r <= a || !comp(dat[i])) return b;
if (r - l == 1) return l;
ll tmp = lower_bound(i * 2 + 1, a, b, l, (l + r) / 2, comp);
if (tmp < b) return tmp;
return lower_bound(i * 2 + 2, a, b, (l + r) / 2, r, comp);
}
ll upper_bound(int i, int a, int b, int l, int r, function<bool(ll)>comp) {
eval(i, l, r);
if (b <= l || r <= a || !comp(dat[i])) return a - 1;
if (r - l == 1) return l;
ll tmp = upper_bound(i * 2 + 2, a, b, (l + r) / 2, r, comp);
if (tmp >= a) return tmp;
return upper_bound(i * 2 + 1, a, b, l, (l + r) / 2, comp);
}
};
class HLD {
#define HLD_SIZ 400010
using F = function<void(ll&, ll, int)>;
using T = function<ll(ll, ll)>;
int n, st, idx; ll zer, zer2;
bool mde;
int siz[HLD_SIZ];
vector<int>e[HLD_SIZ];
vector<pair<int, pair<int, ll>>>f;
int in[HLD_SIZ], out[HLD_SIZ], rev[HLD_SIZ];
int head[HLD_SIZ], prt[HLD_SIZ], dept[HLD_SIZ];
Segtree seg;
F upd; T qur;
public:
//for update, for query, mode(0:vertex, 1:edge)
void init(int size, F update, T query, ll zero, ll zero2, bool mode) {
n = size, zero = zer, zer2 = zero2;
upd = update, qur = query;
mde = mode;
idx = 0;
f.clear();
for (int i = 0; i <= n; i++) {
siz[i] = 0, prt[i] = -1, head[i] = -1;
in[i] = 0, out[i] = 0, rev[i] = 0;
dept[i] = 0;
e[i].clear();
}
}
void add_edge(int u, int v, ll r) {
add_edge(u, v);
f.pb(make_pair(u, make_pair(v, r)));
}
void add_edge(int u, int v) {
e[u].pb(v);
e[v].pb(u);
}
void build(int root = 0) {
st = root;
dept[st] = 0;
for (auto u : e[st]) normalize(u, st, 1);
for (int i = 0; i <= n; i++) if (i != st && !(~prt[i])) {
dept[i] = 0;
for (auto u : e[i]) normalize(u, i, 1);
}
for (int i = 0; i <= n; i++) if (!(~prt[i])) dfs1(i);
for (int i = 0; i <= n; i++) if (!(~prt[i])) {
head[i] = i; dfs2(i);
}
seg.init(idx, upd, qur, zer, zer2);
if (f.size()) {
vector<ll>v(idx, zer2);
for (auto g : f) {
v[max(in[g.fs], in[g.sc.fs])] = g.sc.sc;
}
seg.build(v);
}
}
void update(int a, int b, ll x) {
while (head[a] != head[b]) {
if (in[a] > in[b]) swap(a, b);
seg.update(in[head[b]], in[b] + 1, x);
b = prt[head[b]];
}
if (in[a] > in[b]) swap(a, b);
seg.update(in[a] + mde, in[b] + 1, x);
}
ll query(int a, int b) {
ll ret = zer2;
while (head[a] != head[b]) {
if (in[a] > in[b]) swap(a, b);
ret = qur(ret, seg.query(in[head[b]], in[b] + 1));
b = prt[head[b]];
}
if (in[a] > in[b]) swap(a, b);
ret = qur(ret, seg.query(in[a] + mde, in[b] + 1));
return ret;
}
int lca(int a, int b) {
while (1) {
if (in[a] > in[b]) swap(a, b);
if (head[a] == head[b]) return a;
b = prt[head[b]];
}
}
void subupdate(int a, ll x) {
seg.update(in[a], out[a], x);
}
ll subquery(int a) {
return seg.query(in[a], out[a]);
}
int par(int x, int t) {
while (~x) {
if (in[x] - in[head[x]] >= t)
return rev[in[head[x]] + ((in[x] - in[head[x]]) - t)];
t -= (in[x] - in[head[x]] + 1);
x = prt[head[x]];
}
return x;
}
ll operator[](const int& i) { return dept[i]; }
ll lower_bound(int a, int b, function<bool(ll)>comp) {
vector<H>left, right;
bool swapped = 0;
while (head[a] != head[b]) {
if (in[a] > in[b]) { swap(a, b); swapped = !swapped; }
if (swapped) left.push_back(H{ in[head[b]], in[b] + 1 });
else right.push_back(H{ in[head[b]],in[b] + 1 });
b = prt[head[b]];
}
//swap=0
if (in[a] > in[b]) { swap(a, b); swapped = !swapped; }
//leftupper_boundrightlower_bound
ll tmp = zer2, r;
for (auto g : left) {
r = seg.upper_bound(g.fs, g.sc, [&](int a) {return comp(qur(tmp, a)); });
if (r != g.fs - 1) return rev[r];
tmp = qur(tmp, seg.query(g.fs, g.sc));
}
if (swapped) {
r = seg.upper_bound(in[a] + mde, in[b] + 1, [&](int a) {return comp(qur(tmp, a)); });
if (r != in[a] + mde - 1) return rev[r];
tmp = qur(tmp, seg.query(in[a] + mde, in[b] + 1));
}
else {
r = seg.lower_bound(in[a] + mde, in[b] + 1, [&](int a) {return comp(qur(tmp, a)); });
if (r != in[b] + 1) return rev[r];
tmp = qur(tmp, seg.query(in[a] + mde, in[b] + 1));
}
for (auto g : right) {
r = seg.lower_bound(g.fs, g.sc, [&](int a) {return comp(qur(tmp, a)); });
if (r != g.sc) return rev[r];
tmp = qur(tmp, seg.query(g.fs, g.sc));
}
return -1;
}//[a,b]qurcomp
private:
void normalize(int v, int p, int d) {
dept[v] = d;
prt[v] = p;
for (auto& u : e[v]) {
if (u == e[v].back()) break;
if (u == p) swap(u, e[v].back());
normalize(u, v, d + 1);
}
if (!e[v].empty()) e[v].pop_back();
}
void dfs1(int v) {
siz[v] = 1;
for (int& u : e[v]) {
dfs1(u);
siz[v] += siz[u];
if (siz[u] > siz[e[v][0]]) {
swap(u, e[v][0]);
}
}
}
void dfs2(int v) {
rev[idx] = v;
in[v] = idx++;
for (auto u : e[v]) {
head[u] = (u == e[v][0] ? head[v] : u);
dfs2(u);
}
out[v] = idx;
}
};
//---------------------------------------------------------------------
int n;
vec<P>e[200000];
ll pa[200000];
Segtree seg;
HLD hld, hld2;
map<int, int>f[200000];
void dfs(int x, int p) {
for (auto g : e[x]) {
if (g.xx == p) continue;
pa[g.xx] = g.yy;
dfs(g.xx, x);
}
}
signed main() {
cin >> n;
hld.init(n, RUQ, RMNQ, 0, inf, 1);
hld2.init(n, RUSQ, RSQ, 0, 0, 1);
rep(i, n - 1) {
int u, v; ll r; u = read(); v = read(); r = read();
u--; v--;
f[u][v] = siz(e[v]);
f[v][u] = siz(e[u]);
e[u].pb(Q( v,r,siz(e[v]) ));
e[v].pb(Q( u,r,siz(e[u]) - 1 ));
hld.add_edge(u, v);
hld2.add_edge(u, v, r);
}
hld.build();
hld2.build();
vec<H>a; int sum = 0;
vi v;
rep(i, n) {
a.pb(H{ sum,sum + siz(e[i]) });
for (auto g : e[i]) {
if (g.xx == hld.par(i, 1)) v.pb(inf);
else v.pb(g.yy);
}
sum += siz(e[i]);
pa[i] = inf;
}
seg.init(siz(v), RUQ, RMNQ, inf, inf);
seg.build(v);
rng(i, 1, n) {
for (auto g : e[i]) {
if (g.xx == hld.par(i, 1)) {
int r = hld.par(i, 1);
ll t = min(seg.query(a[r].fs, a[r].fs + g.zz), seg.query(a[r].fs + g.zz + 1, a[r].sc));
hld.update(i, r, t);
}
}
}
dfs(0, -1);
cdf(read()) {
int u, v; u = read(); v = read();
u--; v--;
int t = hld.lca(u, v);
ll mn = inf;
auto F = [&](int u) {
if (hld[u] - hld[t] > 1) {
chmin(mn, hld.query(u, hld.par(u, hld[u] - hld[t] - 1)));
}
};
F(u); F(v);
auto G = [&](int u) {
if (u != t) {
chmin(mn, seg.query(a[u].fs, a[u].sc));
}
};
G(u); G(v);
if (u == t) swap(u, v);
int g = hld.par(u, max(0ll, hld[u] - hld[t] - 1));
int c = a[t].fs + f[g][t];
chmin(mn, pa[t]);
if (v == t) {
chmin(mn, min(seg.query(a[t].fs, c), seg.query(c + 1, a[t].sc)));
}
else {
int d = a[t].fs + f[hld.par(v, max(0ll, hld[v] - hld[t] - 1))][t];
if (c > d) swap(c, d);
chmin(mn, min(seg.query(a[t].fs, c), min(seg.query(c + 1, d), seg.query(d + 1, a[t].sc))));
}
if (mn == inf) {
printf("-1\n");
}
else {
printf("%lld\n", hld2.query(u, v) + 2 * mn);
}
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0