結果
問題 | No.1262 グラフを作ろう! |
ユーザー | PCTprobability |
提出日時 | 2020-08-20 11:15:41 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 12,532 bytes |
コンパイル時間 | 4,824 ms |
コンパイル使用メモリ | 370,136 KB |
実行使用メモリ | 15,332 KB |
最終ジャッジ日時 | 2024-07-20 20:45:33 |
合計ジャッジ時間 | 115,353 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1,502 ms
15,332 KB |
testcase_01 | AC | 952 ms
8,132 KB |
testcase_02 | AC | 1,604 ms
8,132 KB |
testcase_03 | AC | 1,259 ms
8,136 KB |
testcase_04 | AC | 121 ms
8,132 KB |
testcase_05 | AC | 759 ms
8,132 KB |
testcase_06 | AC | 72 ms
8,132 KB |
testcase_07 | AC | 128 ms
8,132 KB |
testcase_08 | AC | 1,086 ms
8,132 KB |
testcase_09 | AC | 778 ms
8,012 KB |
testcase_10 | AC | 656 ms
8,064 KB |
testcase_11 | AC | 1,133 ms
8,132 KB |
testcase_12 | AC | 1,351 ms
8,136 KB |
testcase_13 | AC | 1,321 ms
8,064 KB |
testcase_14 | AC | 590 ms
8,064 KB |
testcase_15 | AC | 585 ms
8,064 KB |
testcase_16 | AC | 1,160 ms
8,136 KB |
testcase_17 | AC | 1,041 ms
8,064 KB |
testcase_18 | AC | 1,706 ms
8,008 KB |
testcase_19 | AC | 181 ms
8,132 KB |
testcase_20 | AC | 581 ms
8,136 KB |
testcase_21 | AC | 1,792 ms
8,136 KB |
testcase_22 | AC | 64 ms
8,132 KB |
testcase_23 | AC | 775 ms
8,192 KB |
testcase_24 | AC | 1,172 ms
8,192 KB |
testcase_25 | AC | 123 ms
8,064 KB |
testcase_26 | AC | 267 ms
8,136 KB |
testcase_27 | AC | 699 ms
8,008 KB |
testcase_28 | AC | 580 ms
8,132 KB |
testcase_29 | AC | 356 ms
8,132 KB |
testcase_30 | AC | 467 ms
8,132 KB |
testcase_31 | AC | 1,619 ms
8,132 KB |
testcase_32 | AC | 913 ms
8,136 KB |
testcase_33 | AC | 316 ms
8,136 KB |
testcase_34 | AC | 877 ms
8,064 KB |
testcase_35 | AC | 1,328 ms
8,136 KB |
testcase_36 | AC | 393 ms
8,064 KB |
testcase_37 | AC | 2,054 ms
8,128 KB |
testcase_38 | AC | 908 ms
8,136 KB |
testcase_39 | AC | 713 ms
8,000 KB |
testcase_40 | AC | 689 ms
8,128 KB |
testcase_41 | AC | 457 ms
8,064 KB |
testcase_42 | AC | 1,501 ms
8,132 KB |
testcase_43 | AC | 677 ms
8,064 KB |
testcase_44 | AC | 786 ms
8,004 KB |
testcase_45 | AC | 1,350 ms
8,064 KB |
testcase_46 | AC | 327 ms
8,128 KB |
testcase_47 | AC | 771 ms
8,064 KB |
testcase_48 | AC | 1,248 ms
8,192 KB |
testcase_49 | AC | 1,781 ms
8,132 KB |
testcase_50 | AC | 1,497 ms
8,132 KB |
testcase_51 | AC | 1,113 ms
8,192 KB |
testcase_52 | AC | 436 ms
8,064 KB |
testcase_53 | AC | 237 ms
8,136 KB |
testcase_54 | AC | 1,641 ms
8,136 KB |
testcase_55 | AC | 1,163 ms
8,064 KB |
testcase_56 | AC | 482 ms
8,132 KB |
testcase_57 | AC | 2,094 ms
8,128 KB |
testcase_58 | AC | 1,443 ms
8,192 KB |
testcase_59 | AC | 458 ms
8,064 KB |
testcase_60 | AC | 1,938 ms
8,136 KB |
testcase_61 | AC | 648 ms
8,132 KB |
testcase_62 | AC | 1,705 ms
8,132 KB |
testcase_63 | AC | 1,650 ms
8,004 KB |
testcase_64 | AC | 1,048 ms
8,128 KB |
testcase_65 | AC | 234 ms
8,136 KB |
testcase_66 | AC | 702 ms
8,128 KB |
testcase_67 | AC | 463 ms
8,132 KB |
testcase_68 | AC | 277 ms
8,064 KB |
testcase_69 | AC | 502 ms
8,192 KB |
testcase_70 | AC | 1,533 ms
8,128 KB |
testcase_71 | AC | 1,389 ms
8,136 KB |
testcase_72 | AC | 1,852 ms
8,000 KB |
testcase_73 | AC | 2,348 ms
8,064 KB |
testcase_74 | AC | 2,031 ms
8,132 KB |
testcase_75 | AC | 1,688 ms
8,064 KB |
testcase_76 | AC | 1,317 ms
8,132 KB |
testcase_77 | AC | 1,869 ms
8,132 KB |
testcase_78 | AC | 1,598 ms
8,064 KB |
testcase_79 | AC | 2,148 ms
8,132 KB |
testcase_80 | AC | 1,468 ms
8,004 KB |
testcase_81 | AC | 1,862 ms
8,132 KB |
testcase_82 | AC | 2,291 ms
8,064 KB |
testcase_83 | AC | 1,486 ms
8,064 KB |
testcase_84 | AC | 1,397 ms
8,064 KB |
testcase_85 | AC | 2,388 ms
8,192 KB |
testcase_86 | AC | 1,829 ms
8,064 KB |
testcase_87 | AC | 2,164 ms
8,004 KB |
testcase_88 | AC | 1,831 ms
8,136 KB |
testcase_89 | AC | 1,328 ms
8,136 KB |
testcase_90 | TLE | - |
testcase_91 | -- | - |
testcase_92 | -- | - |
testcase_93 | -- | - |
testcase_94 | -- | - |
testcase_95 | -- | - |
ソースコード
//////////////////////////////////////////////////////////////////////////////// // Give me AC!!! // //////////////////////////////////////////////////////////////////////////////// #include <iostream> #include <random> #include <cmath> #include <limits> #include <iostream> #include <bits/stdc++.h> #include <boost/multiprecision/cpp_int.hpp> using namespace std; namespace mp = boost::multiprecision; using namespace mp; using ull = __int128; using ll = long long; using cll = cpp_int; using Graph = vector<vector<int>>; #define coutY cout<<"YES"<<endl #define couty cout<<"Yes"<<endl #define coutN cout<<"NO"<<endl #define coutn cout<<"No"<<endl #define coutdouble(a,b) cout << fixed << setprecision(a) << double(b) << endl; #define vi(a,b) vector<int> a(b) #define vl(a,b) vector<ll> a(b) #define vs(a,b) vector<string> a(b) #define vll(a,b,c) vector<vector<ll>> a(b, vector<ll>(c)); #define intque(a) queue<int> a; #define llque(a) queue<ll> a; #define intque2(a) priority_queue<int, vector<int>, greater<int>> a; #define llque2(a) priority_queue<ll, vector<ll>, greater<ll>> a; #define pushback(a,b) a.push_back(b) #define mapii(M1) map<int, int> M1; #define cou(v,x) count(v.begin(), v.end(), x) #define mapll(M1) map<ll,ll> M1; #define mapls(M1) map<ll, string> M1; #define mapsl(M1) map<string, ll> M1; #define twolook(a,l,r,x) lower_bound(a+l, a+r, x) - a #define sor(a) sort(a.begin(), a.end()) #define rever(a) reverse(a.begin(),a.end()) #define rep(i,a) for(ll i=0;i<a;i++) #define vcin(n) for(ll i=0;i<ll(n.size());i++) cin>>n[i] #define vcout(n) for(ll i=0;i<ll(n.size());i++) cout<<n[i] #define vcin2(n) rep(i,ll(n.size())) rep(j,ll(n.at(0).size())) cin>>n[i][j] const ll mod = 1000000007; const ll MOD = 1000000007; const ll MAX = 200000; //const ll _max = 9223372036854775807; const ll _max = 1223372036854775807; ll fac[MAX],finv[MAX],inv[MAX]; // テーブルを作る前処理 void COMinit() { fac[0] = fac[1] = 1; finv[0] = finv[1] = 1; inv[1] = 1; for (int i = 2; i < MAX; i++){ fac[i] = fac[i - 1] * i % MOD; inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD; finv[i] = finv[i - 1] * inv[i] % MOD; } } // 二項係数計算 long long COM(int n, int k){ if (n < k) return 0; if (n < 0 || k < 0) return 0; return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD; } template< int mod > struct ModInt { int x; ModInt() : x(0) {} ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int) (1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while(b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return ModInt(u); } ModInt pow(int64_t n) const { ModInt ret(1), mul(x); while(n > 0) { if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt &a) { int64_t t; is >> t; a = ModInt< mod >(t); return (is); } static int get_mod() { return mod; } }; using mint = ModInt< mod >; int modPow(long long a, long long n, long long p) { if (n == 0) return 1; // 0乗にも対応する場合 if (n == 1) return a % p; if (n % 2 == 1) return (a * modPow(a, n - 1, p)) % p; long long t = modPow(a, n / 2, p); return (t * t) % p; } ll clocks(ll a,ll b,ll c){ return a*3600+b*60+c; } ll divup(ll b,ll d){ if(b%d==0){ return b/d; } else{ return b/d+1; } } struct UnionFind { vector<int> par; // par[i]:iの親の番号 (例) par[3] = 2 : 3の親が2 UnionFind(int N) : par(N) { //最初は全てが根であるとして初期化 for(int i = 0; i < N; i++) par[i] = i; } int root(int x) { // データxが属する木の根を再帰で得る:root(x) = {xの木の根} if (par[x] == x) return x; return par[x] = root(par[x]); } void unite(int x, int y) { // xとyの木を併合 int rx = root(x); //xの根をrx int ry = root(y); //yの根をry if (rx == ry) return; //xとyの根が同じ(=同じ木にある)時はそのまま par[rx] = ry; //xとyの根が同じでない(=同じ木にない)時:xの根rxをyの根ryにつける } bool same(int x, int y) { // 2つのデータx, yが属する木が同じならtrueを返す int rx = root(x); int ry = root(y); return rx == ry; } }; struct Edge { int to; // 辺の行き先 int weight; // 辺の重み Edge(int t, int w) : to(t), weight(w) { } }; using Graphw = vector<vector<Edge>>; ll zero(ll a){ return max(ll(0),a); } template< typename T > struct FormalPowerSeries : vector< T > { using vector< T >::vector; using P = FormalPowerSeries; using MULT = function< P(P, P) >; static MULT &get_mult() { static MULT mult = nullptr; return mult; } static void set_fft(MULT f) { get_mult() = f; } void shrink() { while(this->size() && this->back() == T(0)) this->pop_back(); } P operator+(const P &r) const { return P(*this) += r; } P operator+(const T &v) const { return P(*this) += v; } P operator-(const P &r) const { return P(*this) -= r; } P operator-(const T &v) const { return P(*this) -= v; } P operator*(const P &r) const { return P(*this) *= r; } P operator*(const T &v) const { return P(*this) *= v; } P operator/(const P &r) const { return P(*this) /= r; } P operator%(const P &r) const { return P(*this) %= r; } P &operator+=(const P &r) { if(r.size() > this->size()) this->resize(r.size()); for(int i = 0; i < r.size(); i++) (*this)[i] += r[i]; return *this; } P &operator+=(const T &r) { if(this->empty()) this->resize(1); (*this)[0] += r; return *this; } P &operator-=(const P &r) { if(r.size() > this->size()) this->resize(r.size()); for(int i = 0; i < r.size(); i++) (*this)[i] -= r[i]; shrink(); return *this; } P &operator-=(const T &r) { if(this->empty()) this->resize(1); (*this)[0] -= r; shrink(); return *this; } P &operator*=(const T &v) { const int n = (int) this->size(); for(int k = 0; k < n; k++) (*this)[k] *= v; return *this; } P &operator*=(const P &r) { if(this->empty() || r.empty()) { this->clear(); return *this; } assert(get_mult() != nullptr); return *this = get_mult()(*this, r); } P &operator%=(const P &r) { return *this -= *this / r * r; } P operator-() const { P ret(this->size()); for(int i = 0; i < this->size(); i++) ret[i] = -(*this)[i]; return ret; } P &operator/=(const P &r) { if(this->size() < r.size()) { this->clear(); return *this; } int n = this->size() - r.size() + 1; return *this = (rev().pre(n) * r.rev().inv(n)).pre(n).rev(n); } P pre(int sz) const { return P(begin(*this), begin(*this) + min((int) this->size(), sz)); } P operator>>(int sz) const { if(this->size() <= sz) return {}; P ret(*this); ret.erase(ret.begin(), ret.begin() + sz); return ret; } P operator<<(int sz) const { P ret(*this); ret.insert(ret.begin(), sz, T(0)); return ret; } P rev(int deg = -1) const { P ret(*this); if(deg != -1) ret.resize(deg, T(0)); reverse(begin(ret), end(ret)); return ret; } P diff() const { const int n = (int) this->size(); P ret(max(0, n - 1)); for(int i = 1; i < n; i++) ret[i - 1] = (*this)[i] * T(i); return ret; } P integral() const { const int n = (int) this->size(); P ret(n + 1); ret[0] = T(0); for(int i = 0; i < n; i++) ret[i + 1] = (*this)[i] / T(i + 1); return ret; } // F(0) must not be 0 P inv(int deg = -1) const { assert(((*this)[0]) != T(0)); const int n = (int) this->size(); if(deg == -1) deg = n; P ret({T(1) / (*this)[0]}); for(int i = 1; i < deg; i <<= 1) { ret = (ret + ret - ret * ret * pre(i << 1)).pre(i << 1); } return ret.pre(deg); } // F(0) must be 1 P log(int deg = -1) const { assert((*this)[0] == 1); const int n = (int) this->size(); if(deg == -1) deg = n; return (this->diff() * this->inv(deg)).pre(deg - 1).integral(); } P sqrt(int deg = -1) const { const int n = (int) this->size(); if(deg == -1) deg = n; if((*this)[0] == T(0)) { for(int i = 1; i < n; i++) { if((*this)[i] != T(0)) { if(i & 1) return {}; if(deg - i / 2 <= 0) break; auto ret = (*this >> i).sqrt(deg - i / 2) << (i / 2); if(ret.size() < deg) ret.resize(deg, T(0)); return ret; } } return P(deg, 0); } P ret({T(1)}); T inv2 = T(1) / T(2); for(int i = 1; i < deg; i <<= 1) { ret = (ret + pre(i << 1) * ret.inv(i << 1)) * inv2; } return ret.pre(deg); } // F(0) must be 0 P exp(int deg = -1) const { assert((*this)[0] == T(0)); const int n = (int) this->size(); if(deg == -1) deg = n; P ret({T(1)}); for(int i = 1; i < deg; i <<= 1) { ret = (ret * (pre(i << 1) + T(1) - ret.log(i << 1))).pre(i << 1); } return ret.pre(deg); } P pow(int64_t k, int deg = -1) const { const int n = (int) this->size(); if(deg == -1) deg = n; for(int i = 0; i < n; i++) { if((*this)[i] != T(0)) { T rev = T(1) / (*this)[i]; P C(*this * rev); P D(n - i); for(int j = i; j < n; j++) D[j - i] = C[j]; D = (D.log() * k).exp() * (*this)[i].pow(k); P E(deg); if(i * k > deg) return E; auto S = i * k; for(int j = 0; j + S < deg && j < D.size(); j++) E[j + S] = D[j]; return E; } } return *this; } T eval(T x) const { T r = 0, w = 1; for(auto &v : *this) { r += w * v; w *= x; } return r; } }; //aはbの何乗以下かを満たす数の内最大の物,(a,10)はaの桁数 ll expless(ll a,ll b){ ll k=0; ll o=1; while(a>=o){ k++; o=o*b; } return k; } //aをb進法で表す ll base(ll a,ll b){ ll ans=0; ll k; while(a>0){ k=a%b; ans+=k; a=a/b; } return ans; } //b進法のaを10進法に直す ll tenbase(ll a,ll b){ ll c=expless(a,10); ll ans=0; ll k=1; for(int i=0;i<c;i++){ ans+=(a%10)*k; k=k*b; a=a/10; } return ans; } vector<pair<long long, long long> > prime_factorize(long long N) { vector<pair<long long, long long> > res; for (long long a = 2; a * a <= N; ++a) { if (N % a != 0) continue; long long ex = 0; // 指数 // 割れる限り割り続ける while (N % a == 0) { ++ex; N /= a; } // その結果を push res.push_back({a, ex}); } // 最後に残った数について if (N != 1) res.push_back({N, 1}); return res; } const int dx[4] = {1, 0, -1, 0}; const int dy[4] = {0, 1, 0, -1}; ll atll(ll a,ll b){ b++; ll c=expless(a,10); ll d=c-b; ll f=1; for(int i=0;i<d;i++){ f=f*10; } a=(a/f); return a%10; } //aがbで何回割り切るか ll exp(ll a,ll b){ ll ans=0; while(a%b==0){ a=a/b; ans++; } return ans; } int main() { COMinit(); ll a,n,m; cin>>n>>m; ll an=0; ll tmp=0; for(ll j=0;j<m;j++){ cin>>a; ll ans=a; const auto &res = prime_factorize(a); for(int i=0;i<res.size();i++){ ans/=res.at(i).first; ans*=(res.at(i).first-1)*(res.at(i).second+1)+1; } an+=ans; tmp+=a; } cout<<an-tmp<<endl; }