結果
問題 | No.1175 Simultaneous Equations |
ユーザー | beet |
提出日時 | 2020-08-21 21:27:14 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 3 ms / 2,000 ms |
コード長 | 4,120 bytes |
コンパイル時間 | 3,369 ms |
コンパイル使用メモリ | 201,592 KB |
最終ジャッジ日時 | 2025-01-13 05:04:16 |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 11 |
ソースコード
#include <bits/stdc++.h> using namespace std; using Int = long long; const char newl = '\n'; template<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;} template<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;} template<typename T> void drop(const T &x){cout<<x<<endl;exit(0);} template<typename T=int> vector<T> read(size_t n){ vector<T> ts(n); for(size_t i=0;i<n;i++) cin>>ts[i]; return ts; } template<typename K> struct Matrix{ typedef vector<K> arr; typedef vector<arr> mat; mat dat; Matrix(size_t r,size_t c):dat(r,arr(c,K())){} Matrix(mat dat):dat(dat){} size_t size() const{return dat.size();} bool empty() const{return size()==0;} arr& operator[](size_t k){return dat[k];} const arr& operator[](size_t k) const {return dat[k];} static Matrix cross(const Matrix &A,const Matrix &B){ Matrix res(A.size(),B[0].size()); for(int i=0;i<(int)A.size();i++) for(int j=0;j<(int)B[0].size();j++) for(int k=0;k<(int)B.size();k++) res[i][j]+=A[i][k]*B[k][j]; return res; } static Matrix identity(size_t n){ Matrix res(n,n); for(int i=0;i<(int)n;i++) res[i][i]=K(1); return res; } Matrix pow(long long n) const{ Matrix a(dat),res=identity(size()); while(n){ if(n&1) res=cross(res,a); a=cross(a,a); n>>=1; } return res; } template<typename T> using ET = enable_if<is_floating_point<T>::value>; template<typename T> using EF = enable_if<!is_floating_point<T>::value>; template<typename T, typename ET<T>::type* = nullptr> static bool is_zero(T x){return abs(x)<1e-8;} template<typename T, typename EF<T>::type* = nullptr> static bool is_zero(T x){return x==T(0);} template<typename T, typename ET<T>::type* = nullptr> static bool compare(T x,T y){return abs(x)<abs(y);} template<typename T, typename EF<T>::type* = nullptr> static bool compare(T x,T y){(void)x;return y!=T(0);} // assume regularity static Matrix gauss_jordan(const Matrix &A,const Matrix &B){ int n=A.size(),l=B[0].size(); Matrix C(n,n+l); for(int i=0;i<n;i++){ for(int j=0;j<n;j++) C[i][j]=A[i][j]; for(int j=0;j<l;j++) C[i][n+j]=B[i][j]; } for(int i=0;i<n;i++){ int p=i; for(int j=i;j<n;j++) if(compare(C[p][i],C[j][i])) p=j; swap(C[i],C[p]); if(is_zero(C[i][i])) return Matrix(0,0); for(int j=i+1;j<n+l;j++) C[i][j]/=C[i][i]; for(int j=0;j<n;j++){ if(i==j) continue; for(int k=i+1;k<n+l;k++) C[j][k]-=C[j][i]*C[i][k]; } } Matrix res(n,l); for(int i=0;i<n;i++) for(int j=0;j<l;j++) res[i][j]=C[i][n+j]; return res; } Matrix inv() const{ Matrix B=identity(size()); return gauss_jordan(*this,B); } static arr linear_equations(const Matrix &A,const arr &b){ Matrix B(b.size(),1); for(int i=0;i<(int)b.size();i++) B[i][0]=b[i]; Matrix tmp=gauss_jordan(A,B); arr res(tmp.size()); for(int i=0;i<(int)tmp.size();i++) res[i]=tmp[i][0]; return res; } K determinant() const{ Matrix A(dat); K res(1); int n=size(); for(int i=0;i<n;i++){ int p=i; for(int j=i;j<n;j++) if(compare(A[p][i],A[j][i])) p=j; if(i!=p) swap(A[i],A[p]),res=-res; if(is_zero(A[i][i])) return K(0); res*=A[i][i]; for(int j=i+1;j<n;j++) A[i][j]/=A[i][i]; for(int j=i+1;j<n;j++) for(int k=i+1;k<n;k++) A[j][k]-=A[j][i]*A[i][k]; } return res; } static K sigma(K x,long long n){ Matrix A(2,2); A[0][0]=x;A[0][1]=0; A[1][0]=1;A[1][1]=1; return A.pow(n)[1][0]; } }; struct Precision{ Precision(){ cout<<fixed<<setprecision(12); } }precision_beet; //INSERT ABOVE HERE signed main(){ cin.tie(0); ios::sync_with_stdio(0); using D = double; D a,b,c,d,e,f; cin>>a>>b>>c>>d>>e>>f; using M = Matrix<D>; M A(2,2); M::arr B(2); A[0][0]=a;A[0][1]=b;B[0]=c; A[1][0]=d;A[1][1]=e;B[1]=f; auto cs=M::linear_equations(A,B); cout<<cs[0]<<' '<<cs[1]<<newl; return 0; }