結果

問題 No.1175 Simultaneous Equations
ユーザー kcvlexkcvlex
提出日時 2020-08-21 21:38:01
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 6,652 bytes
コンパイル時間 1,370 ms
コンパイル使用メモリ 145,448 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-10-15 05:22:51
合計ジャッジ時間 1,933 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 WA -
testcase_01 AC 1 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#define CPP17
#include <limits>
#include <initializer_list>
#include <utility>
#include <bitset>
#include <tuple>
#include <type_traits>
#include <functional>
#include <string>
#include <array>
#include <deque>
#include <list>
#include <queue>
#include <stack>
#include <vector>
#include <map>
#include <set>
#include <unordered_map>
#include <unordered_set>
#include <iterator>
#include <algorithm>
#include <complex>
#include <random>
#include <numeric>
#include <iostream>
#include <iomanip>
#include <sstream>
#include <regex>
#include <cassert>
#include <cstddef>
#ifdef CPP17
#include <variant>
#endif

#define endl codeforces

#define ALL(v) std::begin(v), std::end(v)
#define ALLR(v) std::rbegin(v), std::rend(v)

using ll = std::int64_t;
using ull = std::uint64_t;
using pii = std::pair<int, int>;
using tii = std::tuple<int, int, int>;
using pll = std::pair<ll, ll>;
using tll = std::tuple<ll, ll, ll>;
using size_type = ssize_t;
template <typename T> using vec = std::vector<T>;
template <typename T> using vvec = vec<vec<T>>;

template <typename T> const T& var_min(const T &t) { return t; }
template <typename T> const T& var_max(const T &t) { return t; }
template <typename T, typename... Tail> const T& var_min(const T &t, const Tail&... tail) { return std::min(t, var_min(tail...)); }
template <typename T, typename... Tail> const T& var_max(const T &t, const Tail&... tail) { return std::max(t, var_max(tail...)); }
template <typename T, typename... Tail> void chmin(T &t, const Tail&... tail) { t = var_min(t, tail...); }
template <typename T, typename... Tail> void chmax(T &t, const Tail&... tail) { t = var_max(t, tail...); }

template <typename T, std::size_t Head, std::size_t... Tail> 
struct multi_dim_array { using type = std::array<typename multi_dim_array<T, Tail...>::type, Head>; };

template <typename T, std::size_t Head> 
struct multi_dim_array<T, Head> { using type = std::array<T, Head>; };

template <typename T, std::size_t... Args> using mdarray = typename multi_dim_array<T, Args...>::type;

#ifdef CPP17
template <typename T, typename F, typename... Args> 
void fill_seq(T &t, F f, Args... args) { 
    if constexpr (std::is_invocable<F, Args...>::value) { 
        t = f(args...); 
    } else { 
        for (size_type i = 0; i < t.size(); i++) fill_seq(t[i], f, args..., i); 
    } 
}
#endif

template <typename T> vec<T> make_v(size_type sz) { return vec<T>(sz); }

template <typename T, typename... Tail> 
auto make_v(size_type hs, Tail&&... ts) { 
    auto v = std::move(make_v<T>(std::forward<Tail>(ts)...)); 
    return vec<decltype(v)>(hs, v); 
}

namespace init__ { 
struct InitIO { 
    InitIO() { 
        std::cin.tie(nullptr); 
        std::ios_base::sync_with_stdio(false); 
        std::cout << std::fixed << std::setprecision(30); 
    } 
} init_io; 
}
template <typename T>
T ceil_pow2(T bound) {
    T ret = 1;
    while (ret < bound) ret *= 2;
    return ret;
}
template <typename T>
T ceil_div(T a, T b) { return a / b + !!(a % b); }
#define CPP17


namespace math {

template <typename T = ll>
struct fraction {
    T num, den;
    bool neg;

    constexpr fraction(T num, T den)
        : fraction(abs(num), abs(den), gcd(abs(num), abs(den)), (num < 0) ^ (den < 0)) { }

    constexpr fraction(T num_) : fraction(num_, 1) { }

    constexpr fraction() : fraction(0, 1) { }

    constexpr fraction inv() const {
        assert(num);
        return fraction(den, num, 1, neg);
    }

    constexpr fraction operator-() const {
        auto ret = *this;
        ret.neg ^= true;
        return ret;
    }

    constexpr fraction& operator+=(const fraction &rhs) {
        T l = lcm(den, rhs.den);
        T a = num * (l / den);
        T b = rhs.num * (l / rhs.den);
        if (neg) a *= -1;
        if (rhs.neg) b *= -1;
        den = l;
        num = a + b;
        neg = (num < 0);
        num = abs(num);
        reduction();
        return *this;
    }

    constexpr fraction& operator-=(const fraction &rhs) {
        return (*this) += (-rhs);
    }

    constexpr fraction& operator*=(const fraction &rhs) {
        neg ^= rhs.neg;
        num *= rhs.num;
        den *= rhs.den;
        reduction();
        return *this;
    }

    constexpr fraction& operator/=(const fraction &rhs) {
        return (*this) *= rhs.inv();
    }

    constexpr bool operator==(const fraction &rhs) const {
        return num == rhs.num &&
               den == rhs.den &&
               neg == rhs.neg;
    }

    constexpr bool operator<(const fraction &rhs) const {
        T lv = num * rhs.den;
        T rv = rhs.num * den;
        if (neg) lv *= -1;
        if (rhs.neg) rv *= -1;
        return lv < rv;
    }

    constexpr fraction operator+(const fraction &rhs) const { return fraction(*this) += rhs; }
    constexpr fraction operator-(const fraction &rhs) const { return fraction(*this) -= rhs; }
    constexpr fraction operator*(const fraction &rhs) const { return fraction(*this) *= rhs; }
    constexpr fraction operator/(const fraction &rhs) const { return fraction(*this) /= rhs; }
    constexpr bool operator!=(const fraction &rhs) const { return !((*this) == rhs); }
    constexpr bool operator<=(const fraction &rhs) const { return (*this) == rhs || (*this) < rhs; }
    constexpr bool operator>=(const fraction &rhs) const { return !((*this) < rhs); }
    constexpr bool operator>(const fraction &rhs) const { return !((*this) <= rhs); }

    constexpr T gcd(T a, T b) { return b ? gcd(b, a % b) : a; }
    constexpr T lcm(T a, T b) { return a / gcd(a, b) * b; }
    constexpr T abs(T n) { return n < 0 ? -n : n; }

private:
    constexpr void reduction() {
        if (num == 0) {
            neg = false;
            den = 1;
            return;
        }
        auto g = gcd(num, den);
        if (g) {
            num /= g; 
            den /= g;
        }
    }

    constexpr fraction(T num, T den, T g, bool neg) : num(num / g), den(den / g), neg(neg) { }
};

template <typename T>
std::ostream& operator<<(std::ostream &os, fraction<T> f) {
    if (f.neg) os << "-";
    os << f.num;
    os << "/";
    os << f.den;
    return os;
}

}

int main() {
    using frac_type = math::fraction<ll>;
    ll a, b, c, d, e, f;
    std::cin >> a >> b >> c >> d >> e >> f;

    // d*b*y - a*e*y = b*c - a*f
    // (bd - ae)y = bc-af
    frac_type y(b * c - a * f, b * d - a * e);
    frac_type x = frac_type(c, 1) - (y * frac_type(b, 1));
    x *= frac_type(1, a);
    double g, h, i, j;
    g = x.num; h = x.den;
    i = y.num; j = y.den;
    double xd = g / h, yd = i / j;
    if (x.neg) xd *= -1;
    if (y.neg) yd *= -1;
    std::cout << xd << " " << yd << "\n";
    return 0;
}
0