結果

問題 No.1175 Simultaneous Equations
ユーザー FF256grhyFF256grhy
提出日時 2020-08-21 21:38:15
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 5,180 bytes
コンパイル時間 2,301 ms
コンパイル使用メモリ 208,832 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-10-15 05:23:49
合計ジャッジ時間 2,535 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 2 ms
5,248 KB
testcase_05 AC 2 ms
5,248 KB
testcase_06 AC 2 ms
5,248 KB
testcase_07 AC 2 ms
5,248 KB
testcase_08 AC 1 ms
5,248 KB
testcase_09 AC 2 ms
5,248 KB
testcase_10 AC 2 ms
5,248 KB
testcase_11 AC 2 ms
5,248 KB
testcase_12 AC 2 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
using LL = long long int;
#define incID(i, l, r) for(int i = (l)    ; i <  (r); i++)
#define decID(i, l, r) for(int i = (r) - 1; i >= (l); i--)
#define incII(i, l, r) for(int i = (l)    ; i <= (r); i++)
#define decII(i, l, r) for(int i = (r)    ; i >= (l); i--)
#define inc(i, n)  incID(i, 0, n)
#define dec(i, n)  decID(i, 0, n)
#define inc1(i, n) incII(i, 1, n)
#define dec1(i, n) decII(i, 1, n)
#define inID(v, l, r) ((l) <= (v) && (v) <  (r))
#define inII(v, l, r) ((l) <= (v) && (v) <= (r))
#define PB push_back
#define EB emplace_back
#define MP make_pair
#define MT make_tuple
#define FI first
#define SE second
#define FR front()
#define BA back()
#define ALL(v) v.begin(), v.end()
#define RALL(v) v.rbegin(), v.rend()
auto setmin   = [](auto & a, auto b) { return (b <  a ? a = b, true : false); };
auto setmax   = [](auto & a, auto b) { return (b >  a ? a = b, true : false); };
auto setmineq = [](auto & a, auto b) { return (b <= a ? a = b, true : false); };
auto setmaxeq = [](auto & a, auto b) { return (b >= a ? a = b, true : false); };
#define SI(v) static_cast<int>(v.size())
#define RF(e, v) for(auto & e: v)
#define until(e) while(! (e))
#define if_not(e) if(! (e))
#define ef else if
#define UR assert(false)
// 以下、入出力関係のテンプレ案のテスト
auto * IS = & cin;
// input elements (as a tuple)
template<typename U, int I> void in_(U & t) { }
template<typename U, int I, typename A, typename ... B> void in_(U & t) { (* IS) >> get<I>(t); in_<U, I + 1, B ...>(t); }
template<typename ... T> auto in() { tuple<T ...> t; in_<tuple<T ...>, 0, T ...>(t); return t; }
// input an array
template<typename T, int N> auto ain() { array<T, N> a; inc(i, N) { (* IS) >> a[i]; } return a; }
// input a (multi-dimensional) vector
template<typename T> T vin() { return * istream_iterator<T>(* IS); }
template<typename T, typename N, typename ... M> auto vin(N n, M ... m) {
	vector<decltype(vin<T, M ...>(m ...))> v(n); inc(i, n) { v[i] = vin<T, M ...>(m ...); } return v;
}
// input multi-column (as a tuple of vector)
template<typename U, int I> void colin_(U & t) { }
template<typename U, int I, typename A, typename ... B> void colin_(U & t) {
	get<I>(t).emplace_back(* istream_iterator<A>(* IS)); colin_<U, I + 1, B ...>(t);
}
template<typename ... T> auto colin(int n) {
	tuple<vector<T> ...> t; inc(i, n) { colin_<tuple<vector<T> ...>, 0, T ...>(t); } return t;
}
auto * OS = & cout;
string SP = " ", LN = "\n";
// output elements
void out() { (* OS) << LN << flush; }
template<typename A                > void out(A && a            ) { (* OS) << a      ; out(     ); }
template<typename A, typename ... B> void out(A && a, B && ... b) { (* OS) << a << SP; out(b ...); }
// output a (multi-dimensional) vector
template<typename T> ostream & operator<<(ostream & os, vector<T> const & v) {
	inc(i, v.size()) { os << (i == 0 ? "" : SP) << v[i]; } return os << flush;
}
template<typename T> void vout_(T && v) { (* OS) << v; }
template<typename T, typename A, typename ... B> void vout_(T && v, A a, B ... b) {
	for(auto && w: v) { vout_(w, b ...); (* OS) << a; }
}
template<typename T, typename ... A> void vout(T && v, A ... a) { vout_(v, a ...); out(); }

// ---- ----

template<typename T, int N> struct Matrix {
	vector<vector<T>> v;
	Matrix(T t) {
		init();
		inc(i, N) { v[i][i] = t; }
	}
	Matrix(vector<vector<T>> const & w = { }) { init(w); }
	void init(vector<vector<T>> const & w = { }) {
		v = vector<vector<T>>(N, vector<T>(N, 0));
		assert(w.size() <= N);
		inc(i, w.size()) { assert(w[i].size() <= N);
		inc(j, w[i].size()) {
			v[i][j] = w[i][j];
		}
		}
	}
	vector<T> const & operator[](int i) const { return v[i]; }
	vector<T>       & operator[](int i)       { return v[i]; }
	friend Matrix operator+(Matrix const & a, Matrix const & b) {
		Matrix c;
		inc(i, N) {
		inc(j, N) {
			c[i][j] = a[i][j] + b[i][j];
		}
		}
		return c;
	}
	friend Matrix operator-(Matrix const & a, Matrix const & b) {
		Matrix c;
		inc(i, N) {
		inc(j, N) {
			c[i][j] = a[i][j] - b[i][j];
		}
		}
		return c;
	}
	friend Matrix operator*(Matrix const & a, Matrix const & b) {
		Matrix c;
		inc(i, N) {
		inc(j, N) {
		inc(k, N) {
			c[i][j] += a[i][k] * b[k][j];
		}
		}
		}
		return c;
	}
	friend Matrix operator^(Matrix const & a, LL b) {
		Matrix c(1), e = a; assert(b >= 0);
		while(b) { if(b & 1) { c *= e; } e *= e; b >>= 1; }
		return c;
	}
	friend Matrix & operator+=(Matrix & a, Matrix const & b) { return (a = a + b); }
	friend Matrix & operator-=(Matrix & a, Matrix const & b) { return (a = a - b); }
	friend Matrix & operator*=(Matrix & a, Matrix const & b) { return (a = a * b); }
	friend Matrix & operator^=(Matrix & a, LL             b) { return (a = a ^ b); }
	friend ostream & operator<<(ostream & os, Matrix const & m) {
		inc(i, N) {
		inc(j, N) {
			os << m[i][j] << " ";
		} os << endl;
		} return os;
	}
};

// ----

int main() {
	auto [a, b, c, d, e, f] = ain<int, 6>();
	int det = a * e - b * d;
	Matrix<int, 2> A = { {
		{  e, -b },
		{ -d,  a }
	} }, V = { {
		{ c, 0 },
		{ f, 0 }
	} };
	auto ans = (A * V);
	double D = (det == 0 ? 1 : det);
	out(ans[0][0] / D, ans[1][0] / D);
}
0