結果
| 問題 | No.1253 雀見椪 | 
| コンテスト | |
| ユーザー | 👑  Kazun | 
| 提出日時 | 2020-08-22 04:07:32 | 
| 言語 | PyPy3 (7.3.15) | 
| 結果 | 
                                AC
                                 
                             | 
| 実行時間 | 266 ms / 2,000 ms | 
| コード長 | 5,491 bytes | 
| コンパイル時間 | 213 ms | 
| コンパイル使用メモリ | 81,920 KB | 
| 実行使用メモリ | 77,824 KB | 
| 最終ジャッジ日時 | 2024-07-04 23:21:50 | 
| 合計ジャッジ時間 | 3,802 ms | 
| ジャッジサーバーID (参考情報) | judge1 / judge3 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 1 | 
| other | AC * 14 | 
ソースコード
class Fraction():
    ##入力定義
    def __init__(self,Numerator=0,Denominator=1):
        """分数のオブジェクトを生成する.
        Numerator:分子
        Denominator:分母
        """
        self.a=Numerator
        self.b=Denominator
    #表示定義
    def __str__(self):
        if self.b==1:
            return str(self.a)
        else:
            return "{}/{}".format(self.a,self.b)
    #四則演算定義
    def __add__(self,other):
        c=Fraction()
        if not(isinstance(other,Fraction)):
            other=Fraction.Int_to_Fraction(other)
        c.a=self.a*other.b+self.b*other.a
        c.b=self.b*other.b
        return Fraction.__reduce(c)
    def __radd__(self,other):
        c=Fraction()
        if not(isinstance(other,Fraction)):
            other=Fraction.Int_to_Fraction(other)
        c.a=self.a*other.b+self.b*other.a
        c.b=self.b*other.b
        return Fraction.__reduce(c)
    def __sub__(self,other):
        return self+(-other)
    def __rsub__(self,other):
        return -self+other
    def __mul__(self,other):
        if not(isinstance(other,Fraction)):
            other=Fraction.Int_to_Fraction(other)
        return Fraction.__reduce(Fraction(self.a*other.a,self.b*other.b))
    def __rmul__(self,other):
        if not(isinstance(other,Fraction)):
            other=Fraction.Int_to_Fraction(other)
        return Fraction.__reduce(Fraction(self.a*other.a,self.b*other.b))
    def __floordiv__(self,other):
        if other==Fraction():
            raise ZeroDivisionError
        H=self/other
        return H.a//H.b
    def __rfloordiv__(self,other):
        if self==Fraction():
            raise ZeroDivisionError
        H=other/self
        return H.a//H.b
    def __truediv__(self,other):
        if other==Fraction():
            raise ZeroDivisionError
        if not(isinstance(other,Fraction)):
            other=Fraction.Int_to_Fraction(other)
        return self*Fraction.__inverse(other)
    def __rtruediv__(self,other):
        if self==Fraction():
            raise ZeroDivisionError
        if not(isinstance(self,Fraction)):
            self=Fraction.Int_to_Fraction(other)
        return Fraction.__inverse(self)*other
    def __pow__(self,other):
        if other==0:
            return 1
        n=abs(other)
        g=1
        k=self
        while n>0:
            if n%2:
                g*=k
            k*=k
            n>>=1
        if other>0:
            return g
        else:
            return 1/g
    #丸め
    def __floor__(self):
        return self.a//self.b
    def __ceil__(self):
        return (self.a+self.b-1)//self.b
    #比較演算子
    def __eq__(self,other):
        t=self-other
        if isinstance(t,Fraction):
            return t.a==0
        else:
            return t==0
    def __nq(self,other):
        return not(self==other)
    def __lt__(self,other):
        t=self-other
        if isinstance(t,Fraction):
            return t.a<0
        else:
            return t<0
    def __le__(self,other):
        return (self<other) or (self==other)
    def __gt__(self,other):
        return -self<-other
    def __ge__(self,other):
        return (other<self) or (self==other)
    #その他
    def ToNumber(self):
        return self.a/self.b
    def sign(self):
        s=self.a*self.b
        if s>0:return 1
        elif s==0:return 0
        else:return -1
    def __reduce(self):
        from math import gcd
        g=gcd(self.a,self.b)
        self.a//=g
        self.b//=g
        if self.b<0:
            self.a*=-1
            self.b*=-1
        return Fraction(self.a,self.b)
    def Int_to_Fraction(self):
        if not(isinstance(self,Fraction)):
            return Fraction(self,1)
        else:return self
    def __inverse(self):
        if self==Fraction():
            raise ZeroDivisionError
        return Fraction.__reduce(Fraction(self.b,self.a))
    def __pos__(self):
        return self
    def __neg__(self):
        return Fraction(-self.a,self.b)
    def __abs__(self):
        return max(self,-self)
    #その他
    def is_unit(self):
        return ((self.b)%(self.a))==0
#================================================
M=10**9+7
T=int(input())
assert 1<=T<=10**4,"Tが制約外(T={})".format(T)
H=[]
for i in range(T):
    U=list(map(int,input().split()))
    N=U[0]
    A=(U[1]*pow(U[2],M-2,M))%M
    B=(U[3]*pow(U[4],M-2,M))%M
    C=(U[5]*pow(U[6],M-2,M))%M
    assert 2<=N<=10**18,"第iテストケースのNが制約外(N={})".format(N)
    assert 0<=U[1]<=U[2]<=10**9,"第{}テストケースのグーが制約外(A_G={},B_G={})".format(i+1,U[1],U[2])
    assert 0<=U[3]<=U[4]<=10**9,"第{}テストケースのチョキが制約外(A_C={},B_C={})".format(i+1,U[3],U[4])
    assert 0<=U[5]<=U[6]<=10**9,"第{}テストケースのパーが制約外(A_P={},B_P={})".format(i+1,U[5],U[6])
    assert U[2]!=0,"第{}テストケースのグーの分母が0".format(i+1)
    assert U[4]!=0,"第{}テストケースのチョキの分母が0".format(i+1)
    assert U[6]!=0,"第{}テストケースのパーの分母が0".format(i+1)
    p,q,r=Fraction(U[1],U[2]),Fraction(U[3],U[4]),Fraction(U[5],U[6])
    assert p+q+r==1,"第{}テストケースの確率の和が1ではない.(確率の和={})".format(i+1,p+q+r)
    X=(pow(1-A,N,M)+pow(1-B,N,M)+pow(1-C,N,M))%M
    Y=(pow(A,N,M)+pow(B,N,M)+pow(C,N,M))%M
    H.append((1-X+2*Y)%M)
print("\n".join(map(str,H)))
            
            
            
        