結果

問題 No.526 フィボナッチ数列の第N項をMで割った余りを求める
ユーザー nanophoto12nanophoto12
提出日時 2020-08-22 06:22:03
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 4,258 bytes
コンパイル時間 2,385 ms
コンパイル使用メモリ 210,648 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-10-15 06:45:58
合計ジャッジ時間 2,993 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,820 KB
testcase_02 AC 2 ms
6,820 KB
testcase_03 AC 2 ms
6,816 KB
testcase_04 AC 2 ms
6,816 KB
testcase_05 AC 2 ms
6,816 KB
testcase_06 AC 2 ms
6,816 KB
testcase_07 AC 2 ms
6,816 KB
testcase_08 AC 2 ms
6,820 KB
testcase_09 AC 2 ms
6,816 KB
testcase_10 AC 2 ms
6,820 KB
testcase_11 AC 2 ms
6,816 KB
testcase_12 AC 2 ms
6,816 KB
testcase_13 AC 2 ms
6,820 KB
testcase_14 AC 2 ms
6,820 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>

#define M_PI       3.14159265358979323846   // pi

using namespace std;
typedef long long ll;
typedef pair<ll, ll> P;
typedef tuple<ll, ll, ll> t3;

#define rep(a,n) for(ll a = 0;a < n;a++)

static const ll INF = 1e15;
ll mod = 1e9+7;

template<typename T>
static inline void chmin(T& ref, const T  value) {
    if (ref > value) ref = value;
}

template<typename T>
static inline void chmax(T& ref, const T value) {
    if (ref < value) ref = value;
}

template< class T >
struct Matrix {
	vector< vector< T > > A;

	Matrix() {}

	Matrix(size_t n, size_t m) : A(n, vector< T >(m, 0)) {}

	Matrix(size_t n) : A(n, vector< T >(n, 0)) {};

	size_t height() const {
		return (A.size());
	}

	size_t width() const {
		return (A[0].size());
	}

	inline const vector< T >& operator[](int k) const {
		return (A.at(k));
	}

	inline vector< T >& operator[](int k) {
		return (A.at(k));
	}

	static Matrix Identity(size_t n) {
		Matrix mat(n);
		for (int i = 0; i < n; i++) mat[i][i] = 1;
		return (mat);
	}

	Matrix& operator+=(const Matrix& B) {
		size_t n = height(), m = width();
		assert(n == B.height() && m == B.width());
		for (int i = 0; i < n; i++)
			for (int j = 0; j < m; j++)
				(*this)[i][j] += B[i][j];
		return (*this);
	}

	Matrix& operator-=(const Matrix& B) {
		size_t n = height(), m = width();
		for (int i = 0; i < n; i++)
			for (int j = 0; j < m; j++)
				(*this)[i][j] -= B[i][j];
		return (*this);
	}

	Matrix& operator*=(const Matrix& B) {
		size_t n = height(), m = B.width(), p = width();
		vector< vector< T > > C(n, vector< T >(m, 0));
		for (int i = 0; i < n; i++)
			for (int j = 0; j < m; j++)
				for (int k = 0; k < p; k++)
				{
					C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]);
					C[i][j] %= mod;
				}
		A.swap(C);
		return (*this);
	}

	Matrix& operator^=(long long k) {
		Matrix B = Matrix::Identity(height());
		while (k > 0) {
			if (k & 1) B *= *this;
			*this *= *this;
			k >>= 1LL;
		}
		A.swap(B.A);
		return (*this);
	}

	Matrix& apply(std::function<T(T)> operation) {
		size_t n = height(), m = width();
		for (int i = 0; i < n; i++)
			for (int j = 0; j < m; j++)
				(*this)[i][j] = operation((*this)[i][j]);
		return (*this);
	}

	Matrix& pow(long long k) {
		Matrix B = Matrix::Identity(height());
		while (k > 0) {
			if (k & 1) {
				B *= *this;
				B.apply([&](long long v) {return v % mod; });
			}
			*this *= *this;
			apply([&](long long v) {return v % mod; });
			k >>= 1LL;
		}
		A.swap(B.A);
		return (*this);
	}

	vector<T> product(const vector<T>& right) {
		assert(width() == right.size());
		vector<T> left(height());
		for (int y = 0; y < height(); y++) {
			T sum = 0;
			for (int x = 0; x < width(); x++) {
				sum += this[y][x] * right[x];
			}
			left[y] = sum;
		}
		return left;
	}

	Matrix operator+(const Matrix& B) const {
		return (Matrix(*this) += B);
	}

	Matrix operator-(const Matrix& B) const {
		return (Matrix(*this) -= B);
	}

	Matrix operator*(const Matrix& B) const {
		return (Matrix(*this) *= B);
	}

	Matrix operator^(const long long k) const {
		return (Matrix(*this) ^= k);
	}

	friend ostream& operator<<(ostream& os, Matrix& p) {
		size_t n = p.height(), m = p.width();
		for (int i = 0; i < n; i++) {
			os << "[";
			for (int j = 0; j < m; j++) {
				os << p[i][j] << (j + 1 == m ? "]\n" : ",");
			}
		}
		return (os);
	}


	T determinant() {
		Matrix B(*this);
		assert(width() == height());
		T ret = 1;
		for (int i = 0; i < width(); i++) {
			int idx = -1;
			for (int j = i; j < width(); j++) {
				if (B[j][i] != 0) idx = j;
			}
			if (idx == -1) return (0);
			if (i != idx) {
				ret *= -1;
				swap(B[i], B[idx]);
			}
			ret *= B[i][i];
			T vv = B[i][i];
			for (int j = 0; j < width(); j++) {
				B[i][j] /= vv;
			}
			for (int j = i + 1; j < width(); j++) {
				T a = B[j][i];
				for (int k = 0; k < width(); k++) {
					B[j][k] -= B[i][k] * a;
				}
			}
		}
		return (ret);
	}
};

int main() {
    //F2 = F1 + F0
    //F3 = F1 + F0 + F0;
    //F3 = 1  2  x  F1 
    //F2 = 1  1      F0
    //F3 = 1  1  x  F2 
    //F2 = 1  0      F1

    ll n, m;    
    cin >> n >> m;
	Matrix<ll> mat(2, 2);
	mat[0][0] = 1;
	mat[0][1] = 1;
	mat[1][0] = 1;
	mod = m;
	auto p = mat.pow(n-1);
	cout << p[1][0] << endl;
    return 0;
}
0