結果
問題 | No.1190 Points |
ユーザー | hitonanode |
提出日時 | 2020-08-22 13:30:09 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 191 ms / 2,000 ms |
コード長 | 7,400 bytes |
コンパイル時間 | 2,388 ms |
コンパイル使用メモリ | 217,092 KB |
実行使用メモリ | 18,896 KB |
最終ジャッジ日時 | 2024-10-15 07:44:46 |
合計ジャッジ時間 | 6,599 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,820 KB |
testcase_01 | AC | 2 ms
6,820 KB |
testcase_02 | AC | 2 ms
6,816 KB |
testcase_03 | AC | 96 ms
14,324 KB |
testcase_04 | AC | 85 ms
13,184 KB |
testcase_05 | AC | 69 ms
12,288 KB |
testcase_06 | AC | 137 ms
17,236 KB |
testcase_07 | AC | 144 ms
18,360 KB |
testcase_08 | AC | 149 ms
17,920 KB |
testcase_09 | AC | 158 ms
17,968 KB |
testcase_10 | AC | 157 ms
17,928 KB |
testcase_11 | AC | 108 ms
14,092 KB |
testcase_12 | AC | 164 ms
17,884 KB |
testcase_13 | AC | 108 ms
12,352 KB |
testcase_14 | AC | 26 ms
10,880 KB |
testcase_15 | AC | 191 ms
18,248 KB |
testcase_16 | AC | 16 ms
6,820 KB |
testcase_17 | AC | 158 ms
17,508 KB |
testcase_18 | AC | 61 ms
9,564 KB |
testcase_19 | AC | 17 ms
12,380 KB |
testcase_20 | AC | 89 ms
11,400 KB |
testcase_21 | AC | 38 ms
9,728 KB |
testcase_22 | AC | 40 ms
14,396 KB |
testcase_23 | AC | 185 ms
18,896 KB |
testcase_24 | AC | 185 ms
18,880 KB |
testcase_25 | AC | 140 ms
18,124 KB |
testcase_26 | AC | 80 ms
18,044 KB |
testcase_27 | AC | 132 ms
18,112 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; using lint = long long; using pint = pair<int, int>; using plint = pair<lint, lint>; struct fast_ios { fast_ios(){ cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_; #define ALL(x) (x).begin(), (x).end() #define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++) #define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) template <typename T> void ndarray(vector<T> &vec, int len) { vec.resize(len); } template <typename T, typename... Args> void ndarray(vector<T> &vec, int len, Args... args) { vec.resize(len); for (auto &v : vec) ndarray(v, args...); } template <typename V, typename T> void ndfill(V &x, const T &val) { x = val; } template <typename V, typename T> void ndfill(vector<V> &vec, const T &val) { for (auto &v : vec) ndfill(v, val); } template <typename T> bool chmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; } template <typename T> bool chmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; } template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); } template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); } template <typename T> vector<T> srtunq(vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; } template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (auto &v : vec) is >> v; return is; } template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; } #if __cplusplus >= 201703L template <typename... T> istream &operator>>(istream &is, tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; } template <typename... T> ostream &operator<<(ostream &os, const tuple<T...> &tpl) { std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os; } #endif template <typename T> ostream &operator<<(ostream &os, const deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; } template <typename T> ostream &operator<<(ostream &os, const set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T> ostream &operator<<(ostream &os, const unordered_set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T> ostream &operator<<(ostream &os, const multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa) { os << '(' << pa.first << ',' << pa.second << ')'; return os; } template <typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } template <typename TK, typename TV> ostream &operator<<(ostream &os, const unordered_map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } #ifdef HITONANODE_LOCAL #define dbg(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << ") " << __FILE__ << endl #else #define dbg(x) #endif template<typename T> struct ShortestPath { int V, E; int INVALID = -1; std::vector<std::vector<std::pair<int, T>>> to; ShortestPath() = default; ShortestPath(int V) : V(V), E(0), to(V) {} void add_edge(int s, int t, T len) { assert(0 <= s and s < V); assert(0 <= t and t < V); to[s].emplace_back(t, len); E++; } std::vector<T> dist; std::vector<int> prev; // Dijkstra algorithm // Complexity: O(E log E) void Dijkstra(int s) { assert(0 <= s and s < V); dist.assign(V, std::numeric_limits<T>::max()); dist[s] = 0; prev.assign(V, INVALID); using P = std::pair<T, int>; std::priority_queue<P, std::vector<P>, std::greater<P>> pq; pq.emplace(0, s); while(!pq.empty()) { T d; int v; std::tie(d, v) = pq.top(); pq.pop(); if (dist[v] < d) continue; for (auto nx : to[v]) { T dnx = d + nx.second; if (dist[nx.first] > dnx) { dist[nx.first] = dnx, prev[nx.first] = v; pq.emplace(dnx, nx.first); } } } } // Bellman-Ford algorithm // Complexity: O(VE) bool BellmanFord(int s, int nb_loop) { assert(0 <= s and s < V); dist.assign(V, std::numeric_limits<T>::max()); dist[s] = 0; prev.assign(V, INVALID); for (int l = 0; l < nb_loop; l++) { bool upd = false; for (int v = 0; v < V; v++) { if (dist[v] == std::numeric_limits<T>::max()) continue; for (auto nx : to[v]) { T dnx = dist[v] + nx.second; if (dist[nx.first] > dnx) { dist[nx.first] = dnx, prev[nx.first] = v; upd = true; } } } if (!upd) return true; } return false; } // Warshall-Floyd algorithm // Complexity: O(E + V^3) std::vector<std::vector<T>> dist2d; void WarshallFloyd() { dist2d.assign(V, std::vector<T>(V, std::numeric_limits<T>::max())); for (int i = 0; i < V; i++) { dist2d[i][i] = 0; for (auto p : to[i]) dist2d[i][p.first] = min(dist2d[i][p.first], p.second); } for (int k = 0; k < V; k++) { for (int i = 0; i < V; i++) { if (dist2d[i][k] = std::numeric_limits<T>::max()) continue; for (int j = 0; j < V; j++) { if (dist2d[k][j] = std::numeric_limits<T>::max()) continue; dist2d[i][j] = min(dist2d[i][j], dist2d[i][k] + dist2d[k][j]); } } } } }; int main() { int N, M, P, S, G; cin >> N >> M >> P >> S >> G; S--, G--; ShortestPath<int> graph(N * 2); while (M--) { int u, v; cin >> u >> v; u--, v--; REP(_, 2) { graph.add_edge(u, v + N, 1); graph.add_edge(v + N, u, 1); swap(u, v); } } graph.Dijkstra(S); auto dS = graph.dist; graph.Dijkstra(G); auto dG = graph.dist; vector<int> ret; REP(i, N) { bool flg = false; REP(d, 2) REP(e, 2) { lint D = lint(dS[i + d * N]) + dG[i + e * N]; if (D <= P and (P - D) % 2 == 0) flg = true; } if (flg) ret.emplace_back(i + 1); } if (ret.empty()) puts("-1"); else { cout << ret.size() << '\n'; for (auto x : ret) cout << x << '\n'; } }