結果
問題 | No.1195 数え上げを愛したい(文字列編) |
ユーザー |
![]() |
提出日時 | 2020-08-22 14:17:54 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 1,474 ms / 3,000 ms |
コード長 | 8,141 bytes |
コンパイル時間 | 1,097 ms |
コンパイル使用メモリ | 89,328 KB |
実行使用メモリ | 18,984 KB |
最終ジャッジ日時 | 2024-10-15 08:31:49 |
合計ジャッジ時間 | 11,310 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 26 |
ソースコード
#ifndef CLASS_FAST_MODINT#define CLASS_FAST_MODINT#include <vector>#include <cstdint>using singlebit = uint32_t;using doublebit = uint64_t;const int digit_level = 32;static constexpr singlebit find_inv(singlebit n, int d = 6, singlebit x = 1) {return d == 0 ? x : find_inv(n, d - 1, x * (2 - x * n));}template <singlebit mod> class fast_modint {// Fast Modulo Integer, Assertion: mod < 2^(bits of singlebit - 1) and mod is primeprivate:singlebit n;static constexpr singlebit r2 = (((doublebit(1) << digit_level) % mod) << digit_level) % mod;static constexpr singlebit ninv = singlebit(-1) * find_inv(mod);singlebit reduce(doublebit x) const {singlebit res = (x + doublebit(singlebit(x) * ninv) * mod) >> digit_level;return res < mod ? res : res - mod;}public:fast_modint() : n(0) {};fast_modint(singlebit n_) { n = reduce(doublebit(n_) * r2); };static constexpr singlebit get_mod() { return mod; }singlebit get() const { return reduce(n); }bool operator==(const fast_modint& x) const { return n == x.n; }bool operator!=(const fast_modint& x) const { return n != x.n; }fast_modint& operator+=(const fast_modint& x) { n += x.n; n -= (n < mod ? 0 : mod); return *this; }fast_modint& operator-=(const fast_modint& x) { n += mod - x.n; n -= (n < mod ? 0 : mod); return *this; }fast_modint& operator*=(const fast_modint& x) { n = reduce(doublebit(n) * x.n); return *this; }fast_modint operator+(const fast_modint& x) const { return fast_modint(*this) += x; }fast_modint operator-(const fast_modint& x) const { return fast_modint(*this) -= x; }fast_modint operator*(const fast_modint& x) const { return fast_modint(*this) *= x; }fast_modint inv() const { return binpow(mod - 2); }fast_modint binpow(singlebit b) const {fast_modint ans(1), cur(*this);while (b > 0) {if (b & 1) ans *= cur;cur *= cur;b >>= 1;}return ans;}};template<typename modulo>std::vector<modulo> get_modvector(std::vector<int> v) {std::vector<modulo> ans(v.size());for (int i = 0; i < v.size(); ++i) {ans[i] = modulo(v[i]);}return ans;}#endif // CLASS_FAST_MODINT#ifndef CLASS_POLYNOMIAL_NTT#define CLASS_POLYNOMIAL_NTTtemplate<singlebit mod, singlebit depth, singlebit primroot>class polynomial_ntt {public:using modulo = fast_modint<mod>;static void fourier_transform(std::vector<modulo>& v, bool inverse) {std::size_t s = v.size();for (std::size_t i = 0, j = 1; j < s - 1; ++j) {for (std::size_t k = s >> 1; k > (i ^= k); k >>= 1);if (i < j) std::swap(v[i], v[j]);}std::size_t sc = 0, sz = 1;while (sz < s) sz *= 2, ++sc;modulo root = modulo(primroot).binpow((mod - 1) >> sc);std::vector<modulo> pw(s + 1); pw[0] = 1;for (std::size_t i = 1; i <= s; i++) pw[i] = pw[i - 1] * root;std::size_t qs = s;for (std::size_t b = 1; b < s; b <<= 1) {qs >>= 1;for (std::size_t i = 0; i < s; i += b * 2) {for (std::size_t j = i; j < i + b; ++j) {modulo delta = pw[(inverse ? b * 2 - j + i : j - i) * qs] * v[j + b];v[j + b] = v[j] - delta;v[j] += delta;}}}if (!inverse) return;modulo powinv = modulo((mod + 1) / 2).binpow(sc);for (std::size_t i = 0; i < s; ++i) {v[i] = v[i] * powinv;}}static std::vector<modulo> convolve(std::vector<modulo> v1, std::vector<modulo> v2) {std::size_t s1 = v1.size(), s2 = v2.size(), s = 1;while (s < s1 || s < s2) s *= 2;v1.resize(s * 2); fourier_transform(v1, false);v2.resize(s * 2); fourier_transform(v2, false);for (singlebit i = 0; i < s * 2; ++i) v1[i] *= v2[i];fourier_transform(v1, true);v1.resize(s1 + s2 - 1);return v1;}};#endif // CLASS_POLYNOMIAL_NTT#ifndef CLASS_POLYNOMIAL_MOD#define CLASS_POLYNOMIAL_MOD#include <algorithm>template<const singlebit mod, const singlebit depth, const singlebit primroot>class polynomial_mod {public:using modulo = fast_modint<mod>;using ntt = polynomial_ntt<mod, depth, primroot>;protected:std::size_t sz;std::vector<modulo> a;public:explicit polynomial_mod() : sz(1), a(std::vector<modulo>({ modulo() })) {};explicit polynomial_mod(std::size_t sz_) : sz(sz_), a(std::vector<modulo>(sz_, modulo())) {};explicit polynomial_mod(std::vector<modulo> a_) : sz(a_.size()), a(a_) {};polynomial_mod& operator=(const polynomial_mod& p) {sz = p.sz;a = p.a;return (*this);}std::size_t size() const { return sz; }std::size_t degree() const { return sz - 1; }modulo operator[](std::size_t idx) const {return a[idx];}modulo& operator[](std::size_t idx) {return a[idx];}bool operator==(const polynomial_mod& p) const {for (std::size_t i = 0; i < sz || i < p.sz; ++i) {if ((i < sz ? a[i] : modulo(0)) != (i < p.sz ? p.a[i] : modulo(0))) {return false;}}return true;}bool operator!=(const polynomial_mod& p) const {return !(operator==(p));}polynomial_mod resize_transform(std::size_t d) const {// Resize polynomial to d: in other words, f(x) := f(x) mod x^dpolynomial_mod ans(*this);ans.sz = d;ans.a.resize(d, modulo(0));return ans;}polynomial_mod star_transform() const {// f*(x) = x^degree * f(1/x)polynomial_mod ans(*this);std::reverse(ans.a.begin(), ans.a.end());return ans;}polynomial_mod inverse(std::size_t d) const {// Find g(x) where g(x) * f(x) = 1 (mod x^d)polynomial_mod ans(std::vector<modulo>({ a[0].inv() }));while (ans.size() < d) {polynomial_mod nxt({ modulo(2) });nxt -= ans * resize_transform(ans.size() * 2);nxt *= ans;ans = nxt.resize_transform(ans.size() * 2);}ans = ans.resize_transform(d);return ans;}polynomial_mod& operator+=(const polynomial_mod& p) {sz = std::max(sz, p.sz);a.resize(sz);for (std::size_t i = 0; i < sz; ++i) a[i] += p.a[i];return (*this);}polynomial_mod& operator-=(const polynomial_mod& p) {sz = std::max(sz, p.sz);a.resize(sz);for (std::size_t i = 0; i < sz; ++i) a[i] -= p.a[i];return (*this);}polynomial_mod& operator*=(const polynomial_mod& p) {a = ntt::convolve(a, p.a);sz += p.sz - 1;return (*this);}polynomial_mod& operator/=(const polynomial_mod& p) {std::size_t dn = degree(), dm = p.degree();if (dn < dm) (*this) = polynomial_mod();else {polynomial_mod gstar = p.star_transform().inverse(dn - dm + 1);polynomial_mod qstar = (gstar * (*this).star_transform()).resize_transform(dn - dm + 1);(*this) = qstar.star_transform();}return (*this);}polynomial_mod& operator%=(const polynomial_mod& p) {(*this) -= polynomial_mod(*this) / p * p;(*this) = (*this).resize_transform(p.size() - 1);return (*this);}polynomial_mod operator+() const {return polynomial_mod(*this);}polynomial_mod operator-() const {return polynomial_mod() - polynomial_mod(*this);}polynomial_mod operator+(const polynomial_mod& p) const {return polynomial_mod(*this) += p;}polynomial_mod operator-(const polynomial_mod& p) const {return polynomial_mod(*this) -= p;}polynomial_mod operator*(const polynomial_mod& p) const {return polynomial_mod(*this) *= p;}polynomial_mod operator/(const polynomial_mod& p) const {return polynomial_mod(*this) /= p;}polynomial_mod operator%(const polynomial_mod& p) const {return polynomial_mod(*this) %= p;}};#endif // CLASS_POLYNOMIAL_MOD#include <queue>#include <string>#include <iostream>using namespace std;using poly = polynomial_mod<998244353, 23, 3>;using mint = poly::modulo;int main() {string str;cin >> str;vector<int> cnt(26);for (int i = 0; i < str.size(); ++i) {++cnt[str[i] - 'a'];}queue<poly> que;for (int i = 0; i < 26; ++i) {vector<mint> vec(cnt[i] + 1);vec[0] = 1;for (int j = 1; j <= cnt[i]; ++j) {vec[j] = vec[j - 1] * mint(j).inv();}que.push(poly(vec));}while (que.size() >= 2) {poly pl = que.front(); que.pop();poly pr = que.front(); que.pop();que.push(pl * pr);}poly p = que.front();mint ans = 0; mint fact = 1;for (int i = 0; i < p.size(); ++i) {ans += p[i] * fact;fact *= i + 1;}cout << (ans - 1).get() << endl;return 0;}