結果
| 問題 |
No.1195 数え上げを愛したい(文字列編)
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2020-08-22 14:45:28 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
CE
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 6,712 bytes |
| コンパイル時間 | 932 ms |
| コンパイル使用メモリ | 91,960 KB |
| 最終ジャッジ日時 | 2025-01-13 08:53:06 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:198:20: error: variable ‘std::array<int, 26> cnt’ has initializer but incomplete type
198 | array<int, 26> cnt{};
| ^~~
ソースコード
#include <iostream>
#include <algorithm>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <numeric>
#include <bitset>
#include <cmath>
static const int MOD = 998244353;
using ll = long long;
using u32 = unsigned;
using u64 = unsigned long long;
using namespace std;
template<class T> constexpr T INF = ::numeric_limits<T>::max()/32*15+208;
constexpr int ntt_mod = 998244353, ntt_root = 3;
template<u32 M = 1000000007>
struct modint{
u32 val;
modint(): val(0){}
template<typename T>
modint(T t){t %= (T)M; if(t < 0) t += (T)M; val = t;}
modint pow(ll k) const {
modint res(1), x(val);
while(k){
if(k&1) res *= x;
x *= x;
k >>= 1;
}
return res;
}
template<typename T>
modint& operator=(T t){t %= (T)M; if(t < 0) t += (T)M; val = t; return *this; }
modint inv() const {return pow(M-2);}
modint& operator+=(modint a){ val += a.val; if(val >= M) val -= M; return *this;}
modint& operator-=(modint a){ if(val < a.val) val += M-a.val; else val -= a.val; return *this;}
modint& operator*=(modint a){ val = (u64)val*a.val%M; return *this;}
modint& operator/=(modint a){ return (*this) *= a.inv();}
modint operator+(modint a) const {return modint(val) +=a;}
modint operator-(modint a) const {return modint(val) -=a;}
modint operator*(modint a) const {return modint(val) *=a;}
modint operator/(modint a) const {return modint(val) /=a;}
modint operator-(){ return modint(M-val);}
bool operator==(const modint a) const {return val == a.val;}
bool operator!=(const modint a) const {return val != a.val;}
bool operator<(const modint a) const {return val < a.val;}
};
using mint = modint<ntt_mod>;
class NTT {
static constexpr int max_base = 20, maxN = 1 << max_base; // N <= 524288 * 2
mint roots[maxN << 1], iroots[maxN << 1];
public:
NTT() {
for (int i = 0; i <= max_base; ++i) {
const int offset = (1 << i) - 1;
const mint g = mint(ntt_root).pow((ntt_mod)/(1 << i)), ginv = g.inv();
mint x = 1, y = 1;
for (int j = 0; j < 1 << i; ++j) {
roots[offset+j] = x;
x *= g;
iroots[offset+j] = y;
y *= ginv;
}
}
}
void transform(vector<mint> &a, int sign){
const int n = a.size();
if(!sign){ // fft
for(int k = n >> 1; k >= 1; k >>= 1){
for (int i = 0; i < n; i += k << 1) {
for (int j = 0; j < k; ++j) {
const mint tmp = a[i+j]-a[i+j+k];
a[i+j] += a[i+j+k];
a[i+j+k] = tmp*roots[(k << 1)-1+j];
}
}
}
}else { // ifft
for(int k = 1; k <= (n >> 1); k <<= 1){
for (int i = 0; i < n; i += k << 1) {
for (int j = 0; j < k; ++j) {
a[i+j+k] *= iroots[(k << 1)-1+j];
const mint tmp = a[i+j]-a[i+j+k];
a[i+j] += a[i+j+k];
a[i+j+k] = tmp;
}
}
}
const mint x = mint(n).inv();
for (auto &&i : a) i *= x;
}
}
};
NTT ntt;
struct poly {
vector<mint> v;
poly() = default;
explicit poly(int n) : v(n) {};
explicit poly(vector<mint> vv) : v(std::move(vv)) {};
int size() const {return (int)v.size(); }
poly cut(int len){
if(len < v.size()) v.resize(static_cast<unsigned long>(len));
return *this;
}
inline mint& operator[] (int i) {return v[i]; }
poly& operator+=(const poly &a) {
this->v.resize(max(size(), a.size()));
for (int i = 0; i < a.size(); ++i) this->v[i] += a.v[i];
return *this;
}
poly& operator-=(const poly &a) {
this->v.resize(max(size(), a.size()));
for (int i = 0; i < a.size(); ++i) this->v[i] -= a.v[i];
return *this;
}
poly& operator*=(poly a) {
int N = size()+a.size()-1;
int sz = 1;
while(sz < N) sz <<= 1;
this->v.resize(sz); a.v.resize(sz);
ntt.transform(this->v, 0); ntt.transform(a.v, 0);
for(int i = 0; i < sz; ++i) this->v[i] *= a.v[i];
ntt.transform(this->v, 1);
this->v.resize(N);
return *this;
}
poly& operator/=(const poly &a){ return (*this *= a.inv()); }
poly operator+(const poly &a) const { return poly(*this) += a; }
poly operator-(const poly &a) const { return poly(*this) -= a; }
poly operator*(const poly &a) const { return poly(*this) *= a; }
poly inv() const {
int n = size();
poly r(1);
r[0] = (this->v[0]).inv();
int k = 1;
while(k < n){
k *= 2;
poly ff(k);
for (int i = 0; i < min(k, n); ++i) {
ff[i] = this->v[i];
}
poly nr = (r*r*ff).cut(k);
for (int i = 0; i < k/2; ++i) {
nr[i] = (r[i]+r[i]-nr[i]);
nr[i+k/2] = -nr[i+k/2];
}
r = nr;
}
r.v.resize(n);
return r;
}
};
class Factorial {
vector<mint> facts, factinv;
public:
explicit Factorial(int n) : facts(n+1), factinv(n+1) {
facts[0] = 1;
for (int i = 1; i < n+1; ++i) facts[i] = facts[i-1] * mint(i);
factinv[n] = facts[n].inv();
for (int i = n-1; i >= 0; --i) factinv[i] = factinv[i+1] * mint(i+1);
}
mint fact(int k) const {
if(k >= 0) return facts[k]; else return factinv[-k];
}
mint operator[](const int &k) const {
if(k >= 0) return facts[k]; else return factinv[-k];
}
mint C(int p, int q) const {
if(q < 0 || p < q) return 0;
return facts[p] * factinv[q] * factinv[p-q];
}
mint P(int p, int q) const {
if(q < 0 || p < q) return 0;
return facts[p] * factinv[p-q];
}
mint H(int p, int q) const {
if(p < 0 || q < 0) return 0;
return q == 0 ? 1 : C(p+q-1, q);
}
};
int main() {
string s;
cin >> s;
array<int, 26> cnt{};
for (auto &&i : s) {
cnt[i-'a']++;
}
int n = s.size();
Factorial f(n);
poly x(1);
x[0] = 1;
for (int i = 0; i < 26; ++i) {
if(cnt[i]){
poly y(cnt[i]+1);
for (int j = 0; j <= cnt[i]; ++j) {
y[j] = f[-j];
}
x *= y;
}
}
mint ans = 998244352;
for (int i = 0; i <= n; ++i) {
ans += f[i]*x[i];
}
cout << ans.val << "\n";
return 0;
}