結果
| 問題 |
No.1195 数え上げを愛したい(文字列編)
|
| コンテスト | |
| ユーザー |
tute7627
|
| 提出日時 | 2020-08-22 15:02:38 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 1,645 ms / 3,000 ms |
| コード長 | 8,301 bytes |
| コンパイル時間 | 3,101 ms |
| コンパイル使用メモリ | 212,268 KB |
| 最終ジャッジ日時 | 2025-01-13 09:04:08 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 26 |
ソースコード
//#define _GLIBCXX_DEBUG
#include<bits/stdc++.h>
using namespace std;
#define endl '\n'
#define lfs cout<<fixed<<setprecision(10)
#define ALL(a) (a).begin(),(a).end()
#define ALLR(a) (a).rbegin(),(a).rend()
#define spa << " " <<
#define fi first
#define se second
#define MP make_pair
#define MT make_tuple
#define PB push_back
#define EB emplace_back
#define rep(i,n,m) for(ll i = (n); i < (ll)(m); i++)
#define rrep(i,n,m) for(ll i = (ll)(m) - 1; i >= (ll)(n); i--)
using ll = long long;
using ld = long double;
const ll MOD1 = 1e9+7;
const ll MOD9 = 998244353;
const ll INF = 1e18;
using P = pair<ll, ll>;
template<typename T1, typename T2>bool chmin(T1 &a,T2 b){if(a>b){a=b;return true;}else return false;}
template<typename T1, typename T2>bool chmax(T1 &a,T2 b){if(a<b){a=b;return true;}else return false;}
ll median(ll a,ll b, ll c){return a+b+c-max({a,b,c})-min({a,b,c});}
void ans1(bool x){if(x) cout<<"Yes"<<endl;else cout<<"No"<<endl;}
void ans2(bool x){if(x) cout<<"YES"<<endl;else cout<<"NO"<<endl;}
void ans3(bool x){if(x) cout<<"Yay!"<<endl;else cout<<":("<<endl;}
template<typename T1,typename T2>void ans(bool x,T1 y,T2 z){if(x)cout<<y<<endl;else cout<<z<<endl;}
template<typename T>void debug(vector<vector<T>>&v,ll h,ll w){for(ll i=0;i<h;i++){cout<<v[i][0];for(ll j=1;j<w;j++)cout spa v[i][j];cout<<endl;}};
void debug(vector<string>&v,ll h,ll w){for(ll i=0;i<h;i++){for(ll j=0;j<w;j++)cout<<v[i][j];cout<<endl;}};
template<typename T>void debug(vector<T>&v,ll n){if(n!=0)cout<<v[0];for(ll i=1;i<n;i++)cout spa v[i];cout<<endl;};
template<typename T>vector<vector<T>>vec(ll x, ll y, T w){vector<vector<T>>v(x,vector<T>(y,w));return v;}
ll gcd(ll x,ll y){ll r;while(y!=0&&(r=x%y)!=0){x=y;y=r;}return y==0?x:y;}
vector<ll>dx={1,-1,0,0,1,1,-1,-1};vector<ll>dy={0,0,1,-1,1,-1,1,-1};
template<typename T>vector<T> make_v(size_t a,T b){return vector<T>(a,b);}
template<typename... Ts>auto make_v(size_t a,Ts... ts){return vector<decltype(make_v(ts...))>(a,make_v(ts...));}
template<typename T1, typename T2>ostream &operator<<(ostream &os, const pair<T1, T2>&p){return os << p.first << " " << p.second;}
template<typename T>ostream &operator<<(ostream &os, const vector<T> &v){for(auto &z:v)os << z << " ";cout<<"|"; return os;}
//mt19937 mt(chrono::steady_clock::now().time_since_epoch().count());
template< int mod >
struct ModInt {
int x;
ModInt() : x(0) {}
ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
ModInt &operator+=(const ModInt &p) {
if((x += p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator-=(const ModInt &p) {
if((x += mod - p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator*=(const ModInt &p) {
x = (int) (1LL * x * p.x % mod);
return *this;
}
ModInt &operator/=(const ModInt &p) {
*this *= p.inverse();
return *this;
}
ModInt operator-() const { return ModInt(-x); }
ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
bool operator==(const ModInt &p) const { return x == p.x; }
bool operator!=(const ModInt &p) const { return x != p.x; }
ModInt inverse() const {
int a = x, b = mod, u = 1, v = 0, t;
while(b > 0) {
t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return ModInt(u);
}
ModInt pow(int64_t n) const {
ModInt ret(1), mul(x);
while(n > 0) {
if(n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend ostream &operator<<(ostream &os, const ModInt &p) {
return os << p.x;
}
friend istream &operator>>(istream &is, ModInt &a) {
int64_t t;
is >> t;
a = ModInt< mod >(t);
return (is);
}
static int get_mod() { return mod; }
};
template< typename T >
struct Combination {
vector< T > _fact, _rfact, _inv;
Combination(ll sz) : _fact(sz + 1), _rfact(sz + 1), _inv(sz + 1) {
_fact[0] = _rfact[sz] = _inv[0] = 1;
for(ll i = 1; i <= sz; i++) _fact[i] = _fact[i - 1] * i;
_rfact[sz] /= _fact[sz];
for(ll i = sz - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1);
for(ll i = 1; i <= sz; i++) _inv[i] = _rfact[i] * _fact[i - 1];
}
inline T fact(ll k) const { return _fact[k]; }
inline T rfact(ll k) const { return _rfact[k]; }
inline T inv(ll k) const { return _inv[k]; }
T P(ll n, ll r) const {
if(r < 0 || n < r) return 0;
return fact(n) * rfact(n - r);
}
T C(ll p, ll q) const {
if(q < 0 || p < q) return 0;
return fact(p) * rfact(q) * rfact(p - q);
}
T RC(ll p, ll q) const {
if(q < 0 || p < q) return 0;
return rfact(p) * fact(q) * fact(p - q);
}
T H(ll n, ll r) const {
if(n < 0 || r < 0) return (0);
return r == 0 ? 1 : C(n + r - 1, r);
}
};
using modint = ModInt< MOD9 >;modint pow(ll n, ll x){return modint(n).pow(x);}modint pow(modint n, ll x){return n.pow(x);}
//using modint=ld;
using Comb=Combination<modint>;
template< int mod >
struct NumberTheoreticTransform {
vector< int > rev, rts;
int base, max_base, root;
NumberTheoreticTransform() : base(1), rev{0, 1}, rts{0, 1} {
assert(mod >= 3 && mod % 2 == 1);
auto tmp = mod - 1;
max_base = 0;
while(tmp % 2 == 0) tmp >>= 1, max_base++;
root = 2;
while(mod_pow(root, (mod - 1) >> 1) == 1) ++root;
assert(mod_pow(root, mod - 1) == 1);
root = mod_pow(root, (mod - 1) >> max_base);
}
inline int mod_pow(int x, int n) {
int ret = 1;
while(n > 0) {
if(n & 1) ret = mul(ret, x);
x = mul(x, x);
n >>= 1;
}
return ret;
}
inline int inverse(int x) {
return mod_pow(x, mod - 2);
}
inline unsigned add(unsigned x, unsigned y) {
x += y;
if(x >= mod) x -= mod;
return x;
}
inline unsigned mul(unsigned a, unsigned b) {
return 1ull * a * b % (unsigned long long) mod;
}
void ensure_base(int nbase) {
if(nbase <= base) return;
rev.resize(1 << nbase);
rts.resize(1 << nbase);
for(int i = 0; i < (1 << nbase); i++) {
rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));
}
assert(nbase <= max_base);
while(base < nbase) {
int z = mod_pow(root, 1 << (max_base - 1 - base));
for(int i = 1 << (base - 1); i < (1 << base); i++) {
rts[i << 1] = rts[i];
rts[(i << 1) + 1] = mul(rts[i], z);
}
++base;
}
}
void ntt(vector< int > &a) {
const int n = (int) a.size();
assert((n & (n - 1)) == 0);
int zeros = __builtin_ctz(n);
ensure_base(zeros);
int shift = base - zeros;
for(int i = 0; i < n; i++) {
if(i < (rev[i] >> shift)) {
swap(a[i], a[rev[i] >> shift]);
}
}
for(int k = 1; k < n; k <<= 1) {
for(int i = 0; i < n; i += 2 * k) {
for(int j = 0; j < k; j++) {
int z = mul(a[i + j + k], rts[j + k]);
a[i + j + k] = add(a[i + j], mod - z);
a[i + j] = add(a[i + j], z);
}
}
}
}
vector< int > multiply(vector< int > a, vector< int > b) {
int need = a.size() + b.size() - 1;
int nbase = 1;
while((1 << nbase) < need) nbase++;
ensure_base(nbase);
int sz = 1 << nbase;
a.resize(sz, 0);
b.resize(sz, 0);
ntt(a);
ntt(b);
int inv_sz = inverse(sz);
for(int i = 0; i < sz; i++) {
a[i] = mul(a[i], mul(b[i], inv_sz));
}
reverse(a.begin() + 1, a.end());
ntt(a);
a.resize(need);
return a;
}
};
int main(){
cin.tie(nullptr);
ios_base::sync_with_stdio(false);
ll res=0,buf=0;
bool judge = true;
NumberTheoreticTransform<MOD9>ntt;
string s;cin>>s;
vector<ll>cnt(26);
for(auto c:s)cnt[c-'a']++;
vector<int>ret(1,1);
Comb comb(500005);
rep(i,0,26){
vector<modint>v(cnt[i]+1,1);
rep(j,1,cnt[i]+1)v[j]*=comb.rfact(j);
vector<int>v2(cnt[i]+1);
//rep(j,0,cnt[i]+1)v2[j]=v[j];
rep(j,0,cnt[i]+1)v2[j]=v[j].x;
ret=ntt.multiply(ret,v2);
//debug(ret,ret.size());
}
modint rett=0;
rep(i,0,ret.size()){
rett+=comb.fact(i)*ret[i];
//cout<<comb.fact(i)*ret[i]<<endl;
}
//debug(ret,ret.size());
cout<<rett-1<<endl;
return 0;
}
tute7627