結果
| 問題 |
No.1195 数え上げを愛したい(文字列編)
|
| コンテスト | |
| ユーザー |
risujiroh
|
| 提出日時 | 2020-08-22 16:13:46 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 1,156 ms / 3,000 ms |
| コード長 | 3,667 bytes |
| コンパイル時間 | 4,696 ms |
| コンパイル使用メモリ | 256,824 KB |
| 最終ジャッジ日時 | 2025-01-13 10:06:18 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 26 |
ソースコード
#include <bits/extc++.h>
#ifndef DUMP
#define DUMP(...) (void)0
#endif
using namespace std;
template <class T, class Op = multiplies<>>
constexpr T power(T a, uint64_t n, T init = 1, Op op = Op{}) {
while (n) {
if (n & 1) init = op(init, a);
if (n >>= 1) a = op(a, a);
}
return init;
}
template <class T>
void ntt(vector<T>& a, bool inverse) {
int n = size(a);
assert((n & (n - 1)) == 0);
if (n < 2) return;
assert((T::mod - 1) % n == 0);
static vector<T> w{1}, iw{1};
for (int m = size(w); m < n / 2; m *= 2) {
static T root = 2;
while (power(root, (T::mod - 1) / 2) == 1) root += 1;
T dw = power(root, (T::mod - 1) / (4 * m)), idw = 1 / dw;
w.resize(2 * m), iw.resize(2 * m);
for (int i = 0; i < m; ++i) w[m + i] = w[i] * dw, iw[m + i] = iw[i] * idw;
}
if (not inverse) {
for (int m = n; m >>= 1;) {
for (int s = 0, k = 0; s < n; s += 2 * m, ++k) {
for (int i = s, j = s + m; i < s + m; ++i, ++j) {
T x = a[i], y = a[j] * w[k];
a[i] = x + y, a[j] = x - y;
}
}
}
} else {
for (int m = 1; m < n; m *= 2) {
for (int s = 0, k = 0; s < n; s += 2 * m, ++k) {
for (int i = s, j = s + m; i < s + m; ++i, ++j) {
T x = a[i], y = a[j];
a[i] = x + y, a[j] = (x - y) * iw[k];
}
}
}
auto inv = 1 / T(n);
for (auto&& e : a) e *= inv;
}
}
template <class T>
vector<T> operator*(vector<T> a, vector<T> b) {
if (empty(a) or empty(b)) return {};
int n = size(a), m = size(b), sz = 1 << __lg(2 * (n + m - 1) - 1);
a.resize(sz), ntt(a, false);
b.resize(sz), ntt(b, false);
for (int i = 0; i < sz; ++i) a[i] *= b[i];
ntt(a, true), a.resize(n + m - 1);
return a;
}
template <uint32_t M>
struct modular {
using T = modular;
static constexpr uint32_t mod = M;
uint32_t v;
modular(int64_t x = 0) : v((x %= mod) < 0 ? x + mod : x) {}
T operator-() const { return T() -= *this; }
T& operator+=(T b) { return (int)(v += b.v - mod) < 0 ? v += mod : v, *this; }
T& operator-=(T b) { return (int)(v -= b.v) < 0 ? v += mod : v, *this; }
T& operator*=(T b) { return v = (uint64_t)v * b.v % mod, *this; }
T& operator/=(T b) { return *this *= power(b, mod - 2); }
friend T operator+(T a, T b) { return a += b; }
friend T operator-(T a, T b) { return a -= b; }
friend T operator*(T a, T b) { return a *= b; }
friend T operator/(T a, T b) { return a /= b; }
friend bool operator==(T a, T b) { return a.v == b.v; }
};
using mint = modular<998244353>;
vector<mint> fact, inv_fact, minv;
void prepare(int n) {
fact.resize(n + 1), inv_fact.resize(n + 1), minv.resize(n + 1);
for (int i = 0; i <= n; ++i) fact[i] = i ? fact[i - 1] * i : 1;
inv_fact[n] = power(fact[n], mint::mod - 2);
for (int i = n; i--;) inv_fact[i] = (i + 1) * inv_fact[i + 1];
for (int i = 1; i <= n; ++i) minv[i] = inv_fact[i] * fact[i - 1];
}
mint binom(int n, int k) {
if (k < 0 or k > n) return 0;
return fact[n] * inv_fact[k] * inv_fact[n - k];
}
template <>
mint& mint::operator/=(mint b) {
return *this *= b.v < minv.size() ? minv[b.v] : power(b, mod - 2);
}
int main() {
cin.tie(nullptr)->sync_with_stdio(false);
string s;
cin >> s;
int n = size(s);
prepare(n + 26);
vector<int> cnt(26);
for (char c : s) ++cnt[c - 'a'];
vector<mint> f{1};
for (int e : cnt) {
vector<mint> t(e + 1);
for (int i = 0; i <= e; ++i) t[i] = inv_fact[i];
f = f * t;
}
mint res;
for (int i = 1; i <= n; ++i) res += f[i] * fact[i];
cout << res.v << '\n';
}
risujiroh