結果
問題 | No.1195 数え上げを愛したい(文字列編) |
ユーザー | haruki_K |
提出日時 | 2020-08-22 16:23:00 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 1,172 ms / 3,000 ms |
コード長 | 15,085 bytes |
コンパイル時間 | 2,379 ms |
コンパイル使用メモリ | 215,312 KB |
実行使用メモリ | 12,876 KB |
最終ジャッジ日時 | 2024-10-15 10:26:17 |
合計ジャッジ時間 | 12,522 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 580 ms
11,632 KB |
testcase_01 | AC | 580 ms
11,688 KB |
testcase_02 | AC | 581 ms
11,660 KB |
testcase_03 | AC | 287 ms
5,844 KB |
testcase_04 | AC | 103 ms
6,188 KB |
testcase_05 | AC | 1,172 ms
12,876 KB |
testcase_06 | AC | 2 ms
5,248 KB |
testcase_07 | AC | 2 ms
5,248 KB |
testcase_08 | AC | 95 ms
5,248 KB |
testcase_09 | AC | 549 ms
11,620 KB |
testcase_10 | AC | 303 ms
8,368 KB |
testcase_11 | AC | 500 ms
11,880 KB |
testcase_12 | AC | 463 ms
11,532 KB |
testcase_13 | AC | 396 ms
8,328 KB |
testcase_14 | AC | 263 ms
7,312 KB |
testcase_15 | AC | 295 ms
7,492 KB |
testcase_16 | AC | 259 ms
7,384 KB |
testcase_17 | AC | 96 ms
5,248 KB |
testcase_18 | AC | 465 ms
11,664 KB |
testcase_19 | AC | 467 ms
11,536 KB |
testcase_20 | AC | 391 ms
8,952 KB |
testcase_21 | AC | 498 ms
11,740 KB |
testcase_22 | AC | 371 ms
9,060 KB |
testcase_23 | AC | 2 ms
5,248 KB |
testcase_24 | AC | 2 ms
5,248 KB |
testcase_25 | AC | 2 ms
5,248 KB |
ソースコード
// >>> TEMPLATES #include <bits/stdc++.h> using namespace std; using ll = long long; using ld = long double; using i32 = int32_t; using i64 = int64_t; using u32 = uint32_t; using u64 = uint64_t; #define int ll #define double ld #define rep(i,n) for (int i = 0; i < (int)(n); i++) #define rep1(i,n) for (int i = 1; i <= (int)(n); i++) #define repR(i,n) for (int i = (int)(n)-1; i >= 0; i--) #define rep1R(i,n) for (int i = (int)(n); i >= 1; i--) #define loop(i,a,B) for (int i = a; i B; i++) #define loopR(i,a,B) for (int i = a; i B; i--) #define all(x) (x).begin(), (x).end() #define allR(x) (x).rbegin(), (x).rend() #define pb push_back #define eb emplace_back #define mp make_pair #define fst first #define snd second template <class Int> auto constexpr inf = numeric_limits<Int>::max()/2-1; auto constexpr INF32 = inf<int32_t>; auto constexpr INF64 = inf<int64_t>; auto constexpr INF = inf<int>; #ifdef LOCAL #include "debug.hpp" #else #define dump(...) (void)(0) #define say(x) (void)(0) #define debug if (0) #endif template <class T> using pque_max = priority_queue<T>; template <class T> using pque_min = priority_queue<T, vector<T>, greater<T> >; template <class T, class = typename T::iterator, class = typename enable_if<!is_same<T, string>::value>::type> ostream& operator<<(ostream& os, T const& v) { bool f = true; for (auto const& x : v) os << (f ? "" : " ") << x, f = false; return os; } template <class T, class = typename T::iterator, class = typename enable_if<!is_same<T, string>::value>::type> istream& operator>>(istream& is, T &v) { for (auto& x : v) is >> x; return is; } template <class T, class S> ostream& operator<<(ostream& os, pair<T,S> const& p) { return os << "(" << p.first << ", " << p.second << ")"; } template <class T, class S> istream& operator>>(istream& is, pair<T,S>& p) { return is >> p.first >> p.second; } struct IOSetup { IOSetup() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); } } iosetup; template <class F> struct FixPoint : private F { constexpr FixPoint(F&& f) : F(forward<F>(f)) {} template <class... T> constexpr auto operator()(T&&... x) const { return F::operator()(*this, forward<T>(x)...); } }; struct MakeFixPoint { template <class F> constexpr auto operator|(F&& f) const { return FixPoint<F>(forward<F>(f)); } }; #define MFP MakeFixPoint()| #define def(name, ...) auto name = MFP [&](auto &&name, __VA_ARGS__) template <class T, size_t d> struct vec_impl { using type = vector<typename vec_impl<T,d-1>::type>; template <class... U> static type make_v(size_t n, U&&... x) { return type(n, vec_impl<T,d-1>::make_v(forward<U>(x)...)); } }; template <class T> struct vec_impl<T,0> { using type = T; static type make_v(T const& x = {}) { return x; } }; template <class T, size_t d = 1> using vec = typename vec_impl<T,d>::type; template <class T, size_t d = 1, class... Args> auto make_v(Args&&... args) { return vec_impl<T,d>::make_v(forward<Args>(args)...); } template <class T> void quit(T const& x) { cout << x << endl; exit(0); } template <class T, class U> constexpr bool chmin(T& x, U const& y) { if (x > y) { x = y; return true; } return false; } template <class T, class U> constexpr bool chmax(T& x, U const& y) { if (x < y) { x = y; return true; } return false; } template <class It> constexpr auto sumof(It b, It e) { return accumulate(b,e,typename iterator_traits<It>::value_type{}); } template <class T> int sz(T const& x) { return x.size(); } template <class C, class T> int lbd(C const& v, T const& x) { return lower_bound(v.begin(), v.end(), x)-v.begin(); } template <class C, class T> int ubd(C const& v, T const& x) { return upper_bound(v.begin(), v.end(), x)-v.begin(); } const int dx[] = { 1,0,-1,0 }; const int dy[] = { 0,1,0,-1 }; constexpr int popcnt(ll x) { return __builtin_popcountll(x); } template <class Int> struct Random { mt19937_64 mt{random_device{}()}; //mt19937_64 mt{(unsigned)time(0)}; Int a,b; // [a,b] Random(Int a, Int b) : a(a), b(b) {} Int operator()() { return uniform_int_distribution<Int>(a,b)(mt); } }; template <class Int> Int rand(Int a, Int b) { // [a,b] static mt19937_64 mt{random_device{}()}; return uniform_int_distribution<Int>(a,b)(mt); } // <<< // >>> modint template <uint32_t md> class modint { static_assert(md < (1u<<31), ""); using M = modint; using i64 = int64_t; uint32_t x; public: static constexpr uint32_t mod = md; constexpr modint(i64 x = 0) : x((x%=md) < 0 ? x+md : x) { } constexpr i64 val() const { return x; } constexpr explicit operator i64() const { return x; } constexpr bool operator==(M r) const { return x == r.x; } constexpr bool operator!=(M r) const { return x != r.x; } constexpr M operator+() const { return *this; } constexpr M operator-() const { return M()-*this; } constexpr M& operator+=(M r) { x += r.x; x = (x < md ? x : x-md); return *this; } constexpr M& operator-=(M r) { x += md-r.x; x = (x < md ? x : x-md); return *this; } constexpr M& operator*=(M r) { x = (uint64_t(x)*r.x)%md; return *this; } constexpr M& operator/=(M r) { return *this *= r.inv(); } constexpr M operator+(M r) const { return M(*this) += r; } constexpr M operator-(M r) const { return M(*this) -= r; } constexpr M operator*(M r) const { return M(*this) *= r; } constexpr M operator/(M r) const { return M(*this) /= r; } friend constexpr M operator+(i64 x, M y) { return M(x)+y; } friend constexpr M operator-(i64 x, M y) { return M(x)-y; } friend constexpr M operator*(i64 x, M y) { return M(x)*y; } friend constexpr M operator/(i64 x, M y) { return M(x)/y; } constexpr M inv() const { assert(x > 0); return pow(md-2); } constexpr M pow(i64 n) const { assert(not (x == 0 && n == 0)); if (n < 0) return inv().pow(-n); M v = *this, r = 1; for (; n > 0; n >>= 1, v *= v) if (n&1) r *= v; return r; } #ifdef LOCAL friend string to_s(M r) { return to_s(r.val(), mod); } #endif friend ostream& operator<<(ostream& os, M r) { return os << r.val(); } friend istream& operator>>(istream& is, M &r) { i64 x; is >> x; r = x; return is; } }; // <<< constexpr int64_t MOD = 998244353; using mint = modint<MOD>; mint sgn(int n) { return n%2 == 0 ? +1 : -1; } // >>> mod table template <uint32_t mod> struct ModTable { vector<uint32_t> fact = {1,1}, finv = {1,1}, inv = {0,1}; void calc(int n) { int old = fact.size(); if (n < old) return; fact.resize(n+1); finv.resize(n+1); inv.resize(n+1); for (int i = old; i <= n; i++) { fact[i] = uint64_t(fact[i-1])*i % mod; inv[i] = mod - uint64_t(inv[mod%i])*(mod/i) % mod; finv[i] = uint64_t(finv[i-1])*inv[i] % mod; } } }; ModTable<MOD> mod_tab; modint<MOD> fact(int n) { assert(0 <= n); return mod_tab.calc(n), mod_tab.fact[n]; } modint<MOD> finv(int n) { assert(0 <= n); return mod_tab.calc(n), mod_tab.finv[n]; } modint<MOD> C(int n, int k) { if (n < 0 || k < 0 || n < k) return 0; return fact(n)*finv(k)*finv(n-k); } modint<MOD> P(int n, int k) { assert(k >= 0); assert(n >= k); return fact(n)*finv(n-k); } // <<< // >>> FPS template <class NTT> struct FormalPowerSeries : NTT, vector<typename NTT::modint> { using mint = typename NTT::modint; using NTT::conv; using vector<mint>::vector; // inherit constructors using FPS = FormalPowerSeries; FormalPowerSeries() : vector<mint>() {} FormalPowerSeries(vector<mint> const& v) : vector<mint>(v) {} FormalPowerSeries(mint const& x) : vector<mint>({x}) {} mint get(int i) const { assert(i >= 0); if (i < (int)this->size()) return (*this)[i]; else return 0; } bool operator==(FPS const& r) const { const int n = min(this->size(), r.size()); rep (i,n) { if ((*this)[i] != r[i]) return false; } for (int i = n; i < (int)this->size(); ++i) { if ((*this)[i] != mint(0)) return false; } for (int i = n; i < (int)r.size(); ++i) { if (r[i] != mint(0)) return false; } return true; } bool operator!=(FPS const& r) const { return !((*this) == r); } FPS operator+(FPS const& r) const { return FPS(*this) += r; } FPS operator-(FPS const& r) const { return FPS(*this) -= r; } FPS& operator+=(FPS const& r) { if (r.size() > this->size()) this->resize(r.size()); rep (i,r.size()) (*this)[i] += r[i]; return *this; } FPS& operator-=(FPS const& r) { if (r.size() > this->size()) this->resize(r.size()); rep (i,r.size()) (*this)[i] -= r[i]; return *this; } FPS operator*(FPS const& r) const { if (this->empty() || r.empty()) return {}; return conv(*this,r); } FPS& operator*=(FPS const& r) { return *this = *this * r; } friend FPS operator+(mint const& x, FPS const& f) { return FPS{x}+f; } friend FPS operator-(mint const& x, FPS const& f) { return FPS{x}-f; } friend FPS operator*(mint const& x, FPS const& f) { return FPS{x}*f; } friend FPS operator+(FPS const& f, mint const& x) { return f+FPS{x}; } friend FPS operator-(FPS const& f, mint const& x) { return f-FPS{x}; } friend FPS operator*(FPS const& f, mint const& x) { return f*FPS{x}; } FPS take(int sz) const { FPS ret(this->begin(), this->begin() + min<int>(this->size(),sz)); ret.resize(sz); return ret; } FPS inv(int sz = -1) const { assert(this->size()); assert((*this)[0] != mint(0)); if (sz < 0) sz = this->size(); FPS ret = { mint(1)/(*this)[0] }; for (int i = 1; i < sz; i <<= 1) { ret = ret + ret - ret*ret*take(i<<1); ret.resize(i<<1); } ret.resize(sz); return ret; } FPS diff() const { FPS ret(max<int>(0,this->size()-1)); rep (i,ret.size()) ret[i] = (*this)[i+1]*mint(i+1); return ret; } FPS integral() const { FPS ret(this->size()+1); ret[0] = 0; rep (i,this->size()) ret[i+1] = (*this)[i]/mint(i+1); return ret; } FPS log(int sz = -1) const { assert(this->size()); assert((*this)[0] == mint(1)); if (sz < 0) sz = this->size(); return (diff()*inv(sz)).take(sz-1).integral(); } // FPS log(int sz = -1) const { // assert(this->size()); assert((*this)[0] == mint(1)); // if (sz < 0) sz = this->size(); // auto ret = diff()*inv(sz); // ret.resize(sz); // for (int i = sz-1; i > 0; --i) ret[i] = ret[i-1]/mint(i); // ret[0] = 0; // return ret; // } FPS exp(int sz = -1) const { FPS ret = {mint(1)}; if (this->empty()) return ret; assert((*this)[0] == mint(0)); if (sz < 0) sz = this->size(); for (int i = 1; i < sz; i <<= 1) { ret *= take(i<<1) + mint(1) - ret.log(i<<1); ret.resize(i<<1); } ret.resize(sz); return ret; } FPS pow(int64_t k, int sz = -1) const { if (sz < 0) sz = this->size(); int deg = 0; while (deg < sz && (*this).get(deg) == mint(0)) ++deg; assert(k >= 0 || deg == 0); auto c = mint(1)/(*this).get(deg); FPS ret(sz-deg); rep (i,sz-deg) ret[i] = (*this).get(deg+i)*c; ret = (ret.log()*k).exp() * (*this).get(deg).pow(k); ret.resize(sz); for (int i = sz-1; i >= 0; --i) { int j = i-deg*k; ret[i] = (j >= 0 ? ret[j] : mint(0)); } return ret; } mint eval(mint x) const; }; // <<< // >>> NTT template <class ModInt, int64_t g> struct NTT { using modint = ModInt; static constexpr int64_t mod = ModInt::mod, gen = g, max_lg = __builtin_ctzll(mod-1); // mod:prime, g:primitive root static_assert(mod > 0 && g > 0 && max_lg > 0, ""); using arr_t = array<ModInt,max_lg+1>; static arr_t ws,iws; static void init() { static bool built = false; if (built) return; for (int i = 0; i <= max_lg; i++) { ws[i] = -ModInt(g).pow((mod-1)>>(i+2)); iws[i] = ModInt(1)/ws[i]; } built = true; } static void ntt(ModInt a[], int lg) { for (int b = lg-1; b >= 0; b--) { ModInt w = 1; for (int i = 0, k = 0; i < (1<<lg); i += 1<<(b+1)) { for (int j = i; j < (i|(1<<b)); j++) { const int k = j|(1<<b); const auto x = a[j], y = a[k]; a[j] = x + y*w; a[k] = x - y*w; } w *= ws[__builtin_ctz(++k)]; } } // bit_reverse(a,1<<lg); } static void intt(ModInt a[], int lg) { // bit_reverse(a,1<<lg); for (int b = 0; b < lg; b++) { ModInt w = 1; for (int i = 0, k = 0; i < (1<<lg); i += 1<<(b+1)) { for (int j = i; j < (i|(1<<b)); j++) { const int k = j|(1<<b); const auto x = a[j], y = a[k]; a[j] = x + y; a[k] = w*(x - y); } w *= iws[__builtin_ctz(++k)]; } } } template <class T> static vector<ModInt> conv(vector<T> const& a, vector<T> const& b) { if (a.empty() || b.empty()) return {}; init(); const int s = a.size() + b.size() - 1, lg = __lg(2*s-1); assert(lg <= max_lg); vector<ModInt> aa(1<<lg); rep (i,a.size()) aa[i] = (int64_t)a[i]; ntt(aa.data(), lg); vector<ModInt> bb(1<<lg); rep (i,b.size()) bb[i] = (int64_t)b[i]; ntt(bb.data(), lg); const auto x = ModInt(1)/ModInt(1<<lg); rep (i,1<<lg) aa[i] *= bb[i]*x; intt(aa.data(), lg); aa.resize(s); return aa; } template <class T> static vector<ModInt> conv(vector<T> const& a) { if (a.empty()) return {}; init(); const int s = a.size()*2 - 1, lg = __lg(2*s-1); assert(lg <= max_lg); vector<ModInt> aa(1<<lg); rep (i,a.size()) aa[i] = (int64_t)a[i]; ntt(aa.data(), lg); const auto x = ModInt(1)/ModInt(1<<lg); rep (i,1<<lg) aa[i] *= aa[i]*x; intt(aa.data(), lg); aa.resize(s); return aa; } }; template <class ModInt, int64_t g> typename NTT<ModInt,g>::arr_t NTT<ModInt,g>::ws; template <class ModInt, int64_t g> typename NTT<ModInt,g>::arr_t NTT<ModInt,g>::iws; // <<< using ntt = NTT<mint,3>; using FPS = FormalPowerSeries<ntt>; int32_t main() { string s; cin >> s; vector<int> cnt(26); for (char c : s) cnt[c-'a']++; FPS f = {1}; rep (c,26) { FPS g(cnt[c]+1); g.resize(cnt[c]+1); rep (i,cnt[c]+1) g[i] = finv(i); f *= g; } mint ans = 0; rep1 (i,s.size()) ans += fact(i)*f[i]; cout << ans << endl; }