結果
問題 | No.1191 数え上げを愛したい(数列編) |
ユーザー | FF256grhy |
提出日時 | 2020-08-22 18:04:28 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 23 ms / 2,000 ms |
コード長 | 7,347 bytes |
コンパイル時間 | 2,319 ms |
コンパイル使用メモリ | 209,104 KB |
実行使用メモリ | 7,936 KB |
最終ジャッジ日時 | 2024-10-15 11:56:27 |
合計ジャッジ時間 | 3,289 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 9 ms
7,040 KB |
testcase_01 | AC | 17 ms
7,424 KB |
testcase_02 | AC | 11 ms
7,680 KB |
testcase_03 | AC | 10 ms
7,168 KB |
testcase_04 | AC | 17 ms
7,808 KB |
testcase_05 | AC | 6 ms
5,504 KB |
testcase_06 | AC | 23 ms
7,808 KB |
testcase_07 | AC | 12 ms
7,680 KB |
testcase_08 | AC | 12 ms
7,808 KB |
testcase_09 | AC | 12 ms
7,680 KB |
testcase_10 | AC | 10 ms
7,936 KB |
testcase_11 | AC | 11 ms
7,936 KB |
testcase_12 | AC | 15 ms
7,680 KB |
testcase_13 | AC | 18 ms
7,808 KB |
testcase_14 | AC | 21 ms
7,808 KB |
testcase_15 | AC | 4 ms
5,248 KB |
testcase_16 | AC | 3 ms
5,248 KB |
testcase_17 | AC | 4 ms
5,248 KB |
testcase_18 | AC | 3 ms
5,248 KB |
testcase_19 | AC | 4 ms
5,248 KB |
testcase_20 | AC | 4 ms
5,248 KB |
testcase_21 | AC | 3 ms
5,248 KB |
testcase_22 | AC | 9 ms
7,040 KB |
testcase_23 | AC | 2 ms
5,248 KB |
testcase_24 | AC | 2 ms
5,248 KB |
testcase_25 | AC | 2 ms
5,248 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; using LL = long long int; // テンプレテスト中 #define incII(i, l, r) for(LL i = (l) ; i <= (r); i++) #define incID(i, l, r) for(LL i = (l) ; i < (r); i++) #define incCI(i, l, r) for(LL i = (l) + 1; i <= (r); i++) #define incCD(i, l, r) for(LL i = (l) + 1; i < (r); i++) #define decII(i, l, r) for(LL i = (r) ; i >= (l); i--) #define decID(i, l, r) for(LL i = (r) - 1; i >= (l); i--) #define decCI(i, l, r) for(LL i = (r) ; i > (l); i--) #define decCD(i, l, r) for(LL i = (r) - 1; i > (l); i--) #define inc(i, n) incID(i, 0, n) #define dec(i, n) decID(i, 0, n) #define inc1(i, n) incII(i, 1, n) #define dec1(i, n) decII(i, 1, n) auto inII = [](auto v, auto l, auto r) { return (l <= v && v <= r); }; auto inID = [](auto v, auto l, auto r) { return (l <= v && v < r); }; auto inCI = [](auto v, auto l, auto r) { return (l < v && v <= r); }; auto inCD = [](auto v, auto l, auto r) { return (l < v && v < r); }; #define PB push_back #define EB emplace_back #define MP make_pair #define MT make_tuple #define FI first #define SE second #define FR front() #define BA back() #define ALL(v) v.begin(), v.end() #define RALL(v) v.rbegin(), v.rend() auto setmin = [](auto & a, auto b) { return (b < a ? a = b, true : false); }; auto setmax = [](auto & a, auto b) { return (b > a ? a = b, true : false); }; auto setmineq = [](auto & a, auto b) { return (b <= a ? a = b, true : false); }; auto setmaxeq = [](auto & a, auto b) { return (b >= a ? a = b, true : false); }; #define SC static_cast #define SI(v) SC<int>(v.size()) #define SL(v) SC<LL >(v.size()) #define RF(e, v) for(auto & e: v) #define until(e) while(! (e)) #define if_not(e) if(! (e)) #define ef else if #define UR assert(false) #define CT continue #define RV(v) reverse(ALL(v)) auto * IS = & cin; // input elements (as a tuple) template<typename U, int I> void in_(U & t) { } template<typename U, int I, typename A, typename ... B> void in_(U & t) { (* IS) >> get<I>(t); in_<U, I + 1, B ...>(t); } template<typename ... T> auto in() { tuple<T ...> t; in_<tuple<T ...>, 0, T ...>(t); return t; } // input an array template<typename T, int N> auto ain() { array<T, N> a; inc(i, N) { (* IS) >> a[i]; } return a; } // input a (multi-dimensional) vector template<typename T> T vin() { T v; (* IS) >> v; return v; } template<typename T, typename N, typename ... M> auto vin(N n, M ... m) { vector<decltype(vin<T, M ...>(m ...))> v(n); inc(i, n) { v[i] = vin<T, M ...>(m ...); } return v; } // input multi-column (as a tuple of vector) template<typename U, int I> void colin_(U & t) { } template<typename U, int I, typename A, typename ... B> void colin_(U & t) { A a; (* IS) >> a; get<I>(t).push_back(a); colin_<U, I + 1, B ...>(t); } template<typename ... T> auto colin(int n) { tuple<vector<T> ...> t; inc(i, n) { colin_<tuple<vector<T> ...>, 0, T ...>(t); } return t; } auto * OS = & cout; // output elements void out_(string s) { } template<typename A > void out_(string s, A && a ) { (* OS) << a; } template<typename A, typename ... B> void out_(string s, A && a, B && ... b) { (* OS) << a << s; out_(s, b ...); } auto outF = [](auto x, auto y, auto z, auto ... a) { (* OS) << x; out_(y, a ...); (* OS) << z << flush; }; auto out = [](auto ... a) { outF("", " " , "\n", a ...); }; auto outS = [](auto ... a) { outF("", " " , " " , a ...); }; auto outL = [](auto ... a) { outF("", "\n", "\n", a ...); }; auto outN = [](auto ... a) { outF("", "" , "" , a ...); }; array<string, 3> SEQ_FMT = { "", " ", "" }; auto & SEQ_BEG = SEQ_FMT[0]; auto & SEQ_MID = SEQ_FMT[1]; auto & SEQ_END = SEQ_FMT[2]; // output a (multi-dimensional) vector template<typename T> ostream & operator<<(ostream & os, vector<T> const & v) { os << SEQ_BEG; inc(i, v.size()) { os << (i == 0 ? "" : SEQ_MID) << v[i]; } return (os << SEQ_END); } template<typename T > void vout_(T && v ) { (* OS) << v; } template<typename T, typename A, typename ... B> void vout_(T && v, A a, B ... b) { inc(i, v.size()) { (* OS) << (i == 0 ? "" : a); vout_(v[i], b ...); } } template<typename T, typename A, typename ... B> void vout(T && v, A a, B ... b) { vout_(v, b ...); (* OS) << a << flush; } // ---- ---- template<LL M> class ModInt { private: LL v; pair<LL, LL> ext_gcd(LL a, LL b) { if(b == 0) { assert(a == 1); return { 1, 0 }; } auto p = ext_gcd(b, a % b); return { p.SE, p.FI - (a / b) * p.SE }; } public: ModInt(LL vv = 0) { v = vv; if(abs(v) >= M) { v %= M; } if(v < 0) { v += M; } } LL get_v() { return v; } ModInt inv() { return ext_gcd(M, v).SE; } ModInt exp(LL b) { ModInt p = 1, a = v; if(b < 0) { a = a.inv(); b = -b; } while(b) { if(b & 1) { p *= a; } a *= a; b >>= 1; } return p; } friend bool operator< (ModInt a, ModInt b) { return (a.v < b.v); } friend bool operator> (ModInt a, ModInt b) { return (a.v > b.v); } friend bool operator<=(ModInt a, ModInt b) { return (a.v <= b.v); } friend bool operator>=(ModInt a, ModInt b) { return (a.v >= b.v); } friend bool operator==(ModInt a, ModInt b) { return (a.v == b.v); } friend bool operator!=(ModInt a, ModInt b) { return (a.v != b.v); } friend ModInt operator+ (ModInt a ) { return ModInt(+a.v); } friend ModInt operator- (ModInt a ) { return ModInt(-a.v); } friend ModInt operator+ (ModInt a, ModInt b) { return ModInt(a.v + b.v); } friend ModInt operator- (ModInt a, ModInt b) { return ModInt(a.v - b.v); } friend ModInt operator* (ModInt a, ModInt b) { return ModInt(a.v * b.v); } friend ModInt operator/ (ModInt a, ModInt b) { return a * b.inv(); } friend ModInt operator^ (ModInt a, LL b) { return a.exp(b); } friend ModInt & operator+=(ModInt & a, ModInt b) { return (a = a + b); } friend ModInt & operator-=(ModInt & a, ModInt b) { return (a = a - b); } friend ModInt & operator*=(ModInt & a, ModInt b) { return (a = a * b); } friend ModInt & operator/=(ModInt & a, ModInt b) { return (a = a / b); } friend ModInt & operator^=(ModInt & a, LL b) { return (a = a ^ b); } friend istream & operator>>(istream & s, ModInt & b) { s >> b.v; b = ModInt(b.v); return s; } friend ostream & operator<<(ostream & s, ModInt b) { return (s << b.v); } }; // ---- template<typename T> struct Combination { LL n; vector<T> f, r; Combination(LL n) : n(n) { f = r = vector<T>(n + 1); inc(i, n + 1) { f[i] = (i == 0 ? 1 : f[i - 1] * i ); } dec(i, n + 1) { r[i] = (i == n ? f[n].inv() : r[i + 1] * (i + 1)); } } T P(LL a, LL b) { assert(inII(a, 0, n) && inII(b, 0, n)); return (a < b ? 0 : f[a] * r[a - b]); } T C(LL a, LL b) { assert(inII(a, 0, n) && inII(b, 0, n)); return (a < b ? 0 : f[a] * r[a - b] * r[b]); } T H(LL a, LL b) { assert(inII(a, 0, n) && inII(b, 0, n) && inII(a + b - 1, -1, n)); return (a == 0 ? (b == 0 ? 1 : 0) : f[a + b - 1] * r[a - 1] * r[b]); } }; using MI = ModInt<998244353>; int main() { auto [n, m, a, b] = ain<LL, 4>(); Combination<MI> c(m); MI ans = 0; incII(L, a, b) { LL x = m - L; LL y = L - a - (a - 1) * (n - 2); if_not(x >= 0 && y >= n - 2) { continue; } ans += x * c.C(y, n - 2); } inc1(i, n) { ans *= i; } out(ans); }