結果

問題 No.1188 レベルX門松列
ユーザー sansaquasansaqua
提出日時 2020-08-22 18:20:34
言語 Common Lisp
(sbcl 2.3.8)
結果
AC  
実行時間 69 ms / 2,000 ms
コード長 15,696 bytes
コンパイル時間 939 ms
コンパイル使用メモリ 90,752 KB
実行使用メモリ 31,104 KB
最終ジャッジ日時 2024-04-23 12:03:39
合計ジャッジ時間 2,921 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 47 ms
28,800 KB
testcase_01 AC 56 ms
29,312 KB
testcase_02 AC 48 ms
28,672 KB
testcase_03 AC 62 ms
30,336 KB
testcase_04 AC 56 ms
31,104 KB
testcase_05 AC 10 ms
23,040 KB
testcase_06 AC 34 ms
28,800 KB
testcase_07 AC 53 ms
29,696 KB
testcase_08 AC 54 ms
29,952 KB
testcase_09 AC 10 ms
23,040 KB
testcase_10 AC 10 ms
23,168 KB
testcase_11 AC 15 ms
23,808 KB
testcase_12 AC 13 ms
23,808 KB
testcase_13 AC 15 ms
23,936 KB
testcase_14 AC 46 ms
27,776 KB
testcase_15 AC 69 ms
30,976 KB
testcase_16 AC 10 ms
23,296 KB
testcase_17 AC 59 ms
29,440 KB
testcase_18 AC 10 ms
23,296 KB
testcase_19 AC 54 ms
29,184 KB
testcase_20 AC 11 ms
23,168 KB
testcase_21 AC 10 ms
23,040 KB
testcase_22 AC 10 ms
23,040 KB
testcase_23 AC 10 ms
22,912 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
; compiling file "/home/judge/data/code/Main.lisp" (written 23 APR 2024 12:03:35 PM):

; wrote /home/judge/data/code/Main.fasl
; compilation finished in 0:00:00.616

ソースコード

diff #

(in-package :cl-user)
(eval-when (:compile-toplevel :load-toplevel :execute)
  (sb-int:defconstant-eqx opt
    #+swank '(optimize (speed 3) (safety 2))
    #-swank '(optimize (speed 3) (safety 0) (debug 0))
    #'equal)
  #+swank (ql:quickload '(:cl-debug-print :fiveam) :silent t)
  #-swank (set-dispatch-macro-character
           #\# #\> (lambda (s c p) (declare (ignore c p)) `(values ,(read s nil nil t)))))
#+swank (cl-syntax:use-syntax cl-debug-print:debug-print-syntax)

(defmacro define-int-types (&rest bits)
  `(progn
     ,@(mapcar (lambda (b) `(deftype ,(intern (format nil "UINT~A" b)) () '(unsigned-byte ,b))) bits)
     ,@(mapcar (lambda (b) `(deftype ,(intern (format nil "INT~A" b)) () '(signed-byte ,b))) bits)))
(define-int-types 2 4 7 8 15 16 31 32 62 63 64)

(defconstant +mod+ 1000000007)

(defmacro dbg (&rest forms)
  #+swank (if (= (length forms) 1)
              `(format *error-output* "~A => ~A~%" ',(car forms) ,(car forms))
              `(format *error-output* "~A => ~A~%" ',forms `(,,@forms)))
  #-swank (declare (ignore forms)))

(declaim (inline println))
(defun println (obj &optional (stream *standard-output*))
  (let ((*read-default-float-format* 'double-float))
    (prog1 (princ obj stream) (terpri stream))))

;; BEGIN_INSERTED_CONTENTS
(defpackage :cp/read-fixnum
  (:use :cl)
  (:export #:read-fixnum))
(in-package :cp/read-fixnum)

(declaim (ftype (function * (values fixnum &optional)) read-fixnum))
(defun read-fixnum (&optional (in *standard-input*))
  "NOTE: cannot read -2^62"
  (macrolet ((%read-byte ()
               `(the (unsigned-byte 8)
                     #+swank (char-code (read-char in nil #\Nul))
                     #-swank (sb-impl::ansi-stream-read-byte in nil #.(char-code #\Nul) nil))))
    (let* ((minus nil)
           (result (loop (let ((byte (%read-byte)))
                           (cond ((<= 48 byte 57)
                                  (return (- byte 48)))
                                 ((zerop byte) ; #\Nul
                                  (error "Read EOF or #\Nul."))
                                 ((= byte #.(char-code #\-))
                                  (setq minus t)))))))
      (declare ((integer 0 #.most-positive-fixnum) result))
      (loop
        (let* ((byte (%read-byte)))
          (if (<= 48 byte 57)
              (setq result (+ (- byte 48)
                              (* 10 (the (integer 0 #.(floor most-positive-fixnum 10))
                                         result))))
              (return (if minus (- result) result))))))))

(defpackage :cp/inverse-table
  (:use :cl)
  (:export #:make-inverse-table #:make-monotone-inverse-table!))
(in-package :cp/inverse-table)

(declaim (inline make-reverse-inverse-table))
(defun make-inverse-table (vector &key (test #'eql))
  "Returns a hash-table that assigns each value of the (usually sorted) VECTOR
of length n to the integers 0, ..., n-1."
  (let ((table (make-hash-table :test test :size (length vector))))
    (dotimes (i (length vector) table)
      (setf (gethash (aref vector i) table) i))))

(declaim (inline make-monotone-inverse-table!))
(defun make-monotone-inverse-table! (vector &key (test #'eql) (order #'<))
  "Sorts VECTOR, deletes all adjacent duplicates, and returns a hash-table that
assigns each value of the vector to the integers 0, 1, ..."
  (declare (function test order)
           (vector vector)
           (inline sort))
  (setq vector (sort vector order))
  (let ((table (make-hash-table :test test :size (length vector)))
        (index 0))
    (declare ((integer 0 #.most-positive-fixnum) index))
    (dotimes (pos (length vector))
      (when (or (zerop pos)
                (not (funcall test (aref vector pos) (aref vector (- pos 1)))))
        (setf (gethash (aref vector pos) table) index)
        (incf index)))
    (values table index)))

(defpackage :cp/modify-macro
  (:use :cl)
  (:export #:minf #:maxf #:mulf #:divf #:iorf #:xorf #:andf))
(in-package :cp/modify-macro)

(macrolet ((def (name fname)
             `(define-modify-macro ,name (new-value) ,fname)))
  (def minf min)
  (def maxf max)
  (def mulf *)
  (def divf /)
  (def iorf logior)
  (def xorf logxor)
  (def andf logand))

;;;
;;; 1-dimensional binary indexed tree on arbitrary commutative monoid
;;;

(defpackage :cp/abstract-bit
  (:use :cl)
  (:export #:define-bitree))
(in-package :cp/abstract-bit)

(defmacro define-bitree (name &key (operator '#'+) (identity 0) sum-type (order '#'<))
  "OPERATOR := binary operator (comprising a commutative monoid)
IDENTITY := object (identity element of the monoid)
ORDER := nil | strict comparison operator on the monoid
SUM-TYPE := nil | type specifier

Defines no structure; BIT is just a vector. This macro defines the three
functions: <NAME>-UPDATE!, point-update function, <NAME>-FOLD, query function for
prefix sum, and COERCE-TO-<NAME>!, constructor. If ORDER is specified, this
macro in addition defines <NAME>-BISECT-LEFT and <NAME>-BISECT-RIGHT, the
bisection functions for prefix sums. (Note that these functions work only when
the sequence of prefix sums (VECTOR[0], VECTOR[0]+VECTOR[1], ...) is monotone.)

SUM-TYPE is used only for the type declaration: each sum
VECTOR[i]+VECTOR[i+1]...+VECTOR[i+k] is declared to be this type. When SUM-TYPE
is NIL, type declaration is omitted. (The array-element-type of vector itself
doesn't need to be identical to SUM-TYPE.)"
  (let* ((name (string name))
         (fname-update (intern (format nil "~A-UPDATE!" name)))
         (fname-fold (intern (format nil "~A-FOLD" name)))
         (fname-coerce (intern (format nil "COERCE-TO-~A!" name)))
         (fname-bisect-left (intern (format nil "~A-BISECT-LEFT" name)))
         (fname-bisect-right (intern (format nil "~A-BISECT-RIGHT" name))))
    `(progn
       (declaim (inline ,fname-update))
       (defun ,fname-update (bitree index delta)
         "Destructively increments the vector: vector[INDEX] = vector[INDEX] +
DELTA"
         (let ((len (length bitree)))
           (do ((i index (logior i (+ i 1))))
               ((>= i len) bitree)
             (declare ((integer 0 #.most-positive-fixnum) i))
             (setf (aref bitree i)
                   (funcall ,operator (aref bitree i) delta)))))

       (declaim (inline ,fname-fold))
       (defun ,fname-fold (bitree end)
         "Returns the sum of the prefix: vector[0] + ... + vector[END-1]."
         (declare ((integer 0 #.most-positive-fixnum) end))
         (let ((res ,identity))
           ,@(when sum-type `((declare (type ,sum-type res))))
           (do ((i (- end 1) (- (logand i (+ i 1)) 1)))
               ((< i 0) res)
             (declare ((integer -1 #.most-positive-fixnum) i))
             (setf res (funcall ,operator res (aref bitree i))))))

       (declaim (inline ,fname-coerce))
       (defun ,fname-coerce (vector)
         "Destructively constructs BIT from VECTOR. (You doesn't need to call
this constructor if what you need is a `zero-filled' BIT, because a vector
filled with the identity element is a valid BIT as it is.)"
         (loop with len = (length vector)
               for i below len
               for dest-i = (logior i (+ i 1))
               when (< dest-i len)
               do (setf (aref vector dest-i)
                        (funcall ,operator (aref vector dest-i) (aref vector i)))
               finally (return vector)))

       ,@(when order
           `((declaim (inline ,fname-bisect-left))
             (defun ,fname-bisect-left (bitree value)
               "Returns the smallest index that satisfies VECTOR[0]+ ... +
VECTOR[index] >= VALUE. Returns the length of VECTOR if VECTOR[0]+
... +VECTOR[length-1] < VALUE. Note that this function deals with a **closed**
interval."
               (declare (vector bitree))
               (if (not (funcall ,order ,identity value))
                   0
                   (let ((len (length bitree))
                         (index+1 0)
                         (cumul ,identity))
                     (declare ((integer 0 #.most-positive-fixnum) index+1)
                              ,@(when sum-type
                                  `((type ,sum-type cumul))))
                     (do ((delta (ash 1 (- (integer-length len) 1))
                                 (ash delta -1)))
                         ((zerop delta) index+1)
                       (declare ((integer 0 #.most-positive-fixnum) delta))
                       (let ((next-index (+ index+1 delta -1)))
                         (when (< next-index len)
                           (let ((next-cumul (funcall ,operator cumul (aref bitree next-index))))
                             ,@(when sum-type
                                 `((declare (type ,sum-type next-cumul))))
                             (when (funcall ,order next-cumul value)
                               (setf cumul next-cumul)
                               (incf index+1 delta)))))))))
             (declaim (inline ,fname-bisect-right))
             (defun ,fname-bisect-right (bitree value)
               "Returns the smallest index that satisfies VECTOR[0]+ ... +
VECTOR[index] > VALUE. Returns the length of VECTOR if VECTOR[0]+
... +VECTOR[length-1] <= VALUE. Note that this function deals with a **closed**
interval."
               (declare (vector bitree))
               (if (funcall ,order value ,identity)
                   0
                   (let ((len (length bitree))
                         (index+1 0)
                         (cumul ,identity))
                     (declare ((integer 0 #.most-positive-fixnum) index+1)
                              ,@(when sum-type
                                  `((type ,sum-type cumul))))
                     (do ((delta (ash 1 (- (integer-length len) 1))
                                 (ash delta -1)))
                         ((zerop delta) index+1)
                       (declare ((integer 0 #.most-positive-fixnum) delta))
                       (let ((next-index (+ index+1 delta -1)))
                         (when (< next-index len)
                           (let ((next-cumul (funcall ,operator cumul (aref bitree next-index))))
                             ,@(when sum-type
                                 `((declare (type ,sum-type next-cumul))))
                             (unless (funcall ,order value next-cumul)
                               (setf cumul next-cumul)
                               (incf index+1 delta))))))))))))))

#|

(define-bitree bitree
  :operator #'+
  :identity 0
  :sum-type fixnum
  :order #'<)

;|#                                     ;

;; Example: compute the number of inversions in a sequence
#|
(declaim (inline make-inverse-lookup-table))
(defun make-inverse-lookup-table (vector &key (test #'eql))
  "Assigns each value of the (usually sorted) VECTOR of length n to the integers
0, ..., n-1."
  (let ((table (make-hash-table :test test :size (length vector))))
    (dotimes (i (length vector) table)
      (setf (gethash (aref vector i) table) i))))

(defun count-inversions (vector &key (order #'<))
  (declare (vector vector))
  (let* ((len (length vector))
         (inv-lookup-table (make-inverse-lookup-table (sort (copy-seq vector) order)))
         (bitree (make-array len :element-type '(integer 0 #.most-positive-fixnum)))
         (inversion-number 0))
    (declare (integer inversion-number))
    (loop for j below len
          for element = (aref vector j)
          for compressed = (gethash element inv-lookup-table)
          for delta of-type integer = (- j (bitree-fold bitree (1+ compressed)))
          do (incf inversion-number delta)
             (bitree-update! bitree compressed 1))
    inversion-number))

(progn
  (assert (= 3 (count-inversions #(2 4 1 3 5))))
  (assert (zerop (count-inversions #(0))))
  (assert (zerop (count-inversions #())))
  (assert (zerop (count-inversions #(1 2))))
  (assert (= 1 (count-inversions #(2 1)))))
;|#

;; BEGIN_USE_PACKAGE
(eval-when (:compile-toplevel :load-toplevel :execute)
  (use-package :cp/abstract-bit :cl-user))
(eval-when (:compile-toplevel :load-toplevel :execute)
  (use-package :cp/modify-macro :cl-user))
(eval-when (:compile-toplevel :load-toplevel :execute)
  (use-package :cp/inverse-table :cl-user))
(eval-when (:compile-toplevel :load-toplevel :execute)
  (use-package :cp/read-fixnum :cl-user))
(in-package :cl-user)

;;;
;;; Body
;;;

(define-bitree bitree
  :operator #'max
  :identity 0
  :sum-type fixnum)

(declaim (ftype (function * (values (simple-array uint31 (*)) &optional)) calc-lis))
(defun calc-lis (as)
  (declare ((simple-array uint31 (*)) as))
  (let* ((n (length as))
         (dp (make-array n :element-type 'uint31 :initial-element 0))
         (res (make-array n :element-type 'uint31 :initial-element 0)))
    (dotimes (i n)
      (let* ((a (aref as i))
             (max (bitree-fold dp a)))
        (setf (aref res i) (+ max 1))
        (bitree-update! dp a (+ max 1))))
    res))

(defun main ()
  (let* ((n (read))
         (as (make-array n :element-type 'uint31 :initial-element 0)))
    (dotimes (i n)
      (setf (aref as i) (read-fixnum)))
    (let ((inv-table (make-monotone-inverse-table! (copy-seq as))))
      (dotimes (i n)
        (setf (aref as i) (gethash (aref as i) inv-table)))
      (let ((max-a (reduce #'max as))
            (lis-left (calc-lis as))
            (lis-right (reverse (calc-lis (reverse as)))))
        (dotimes (i n)
          (setf (aref as i) (- max-a (aref as i))))
        (let ((lds-left (calc-lis as))
              (lds-right (reverse (calc-lis (reverse as))))
              (res 0))
          (loop for l across lis-left
                for r across lis-right
                do (maxf res (- (min l r) 1)))
          (loop for l across lds-left
                for r across lds-right
                do (maxf res (- (min l r) 1)))
          (println res))))))

#-swank (main)

;;;
;;; Test and benchmark
;;;

#+swank
(defun get-clipbrd ()
  (with-output-to-string (out)
    #+os-windows (run-program "powershell.exe" '("-Command" "Get-Clipboard") :output out :search t)
    #+os-unix (run-program "xsel" '("-b" "-o") :output out :search t)))

#+swank (defparameter *this-pathname* (uiop:current-lisp-file-pathname))
#+swank (defparameter *dat-pathname* (uiop:merge-pathnames* "test.dat" *this-pathname*))

#+swank
(defun run (&optional thing (out *standard-output*))
  "THING := null | string | symbol | pathname

null: run #'MAIN using the text on clipboard as input.
string: run #'MAIN using the string as input.
symbol: alias of FIVEAM:RUN!.
pathname: run #'MAIN using the text file as input."
  (let* ((*standard-output* (or out (make-string-output-stream)))
         (res (etypecase thing
                (null
                 (with-input-from-string (*standard-input* (delete #\Return (get-clipbrd)))
                   (main)))
                (string
                 (with-input-from-string (*standard-input* (delete #\Return thing))
                   (main)))
                (symbol (5am:run! thing))
                (pathname
                 (with-open-file (*standard-input* thing)
                   (main))))))
    (if out res (get-output-stream-string *standard-output*))))

#+swank
(defun gen-dat ()
  (uiop:with-output-file (out *dat-pathname* :if-exists :supersede)
    (format out "")))

#+swank
(defun bench (&optional (out (make-broadcast-stream)))
  (time (run *dat-pathname* out)))

;; To run: (5am:run! :sample)
#+swank
(it.bese.fiveam:test :sample
  (it.bese.fiveam:is
   (equal "1
"
          (run "3
1 3 2
" nil)))
  (it.bese.fiveam:is
   (equal "0
"
          (run "1
1
" nil)))
  (it.bese.fiveam:is
   (equal "2
"
          (run "6
5 3 1 2 4 2
" nil))))
0