結果
| 問題 |
No.1195 数え上げを愛したい(文字列編)
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2020-08-23 07:47:23 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 5,575 bytes |
| コンパイル時間 | 1,296 ms |
| コンパイル使用メモリ | 85,756 KB |
| 最終ジャッジ日時 | 2025-01-13 12:22:58 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 6 WA * 20 |
ソースコード
#include <iostream>
#include <algorithm>
#include <vector>
#include <string>
template <int MOD>
struct ModInt {
using lint = long long;
int val;
// constructor
ModInt(lint v = 0) : val(v % MOD) {
if (val < 0) val += MOD;
};
// unary operator
ModInt operator+() const { return ModInt(val); }
ModInt operator-() const { return ModInt(MOD - val); }
ModInt inv() const { return this->pow(MOD - 2); }
// arithmetic
ModInt operator+(const ModInt& x) const { return ModInt(*this) += x; }
ModInt operator-(const ModInt& x) const { return ModInt(*this) -= x; }
ModInt operator*(const ModInt& x) const { return ModInt(*this) *= x; }
ModInt operator/(const ModInt& x) const { return ModInt(*this) /= x; }
ModInt pow(lint n) const {
auto x = ModInt(1);
auto b = *this;
while (n > 0) {
if (n & 1) x *= b;
n >>= 1;
b *= b;
}
return x;
}
// compound assignment
ModInt& operator+=(const ModInt& x) {
if ((val += x.val) >= MOD) val -= MOD;
return *this;
}
ModInt& operator-=(const ModInt& x) {
if ((val -= x.val) < 0) val += MOD;
return *this;
}
ModInt& operator*=(const ModInt& x) {
val = lint(val) * x.val % MOD;
return *this;
}
ModInt& operator/=(const ModInt& x) { return *this *= x.inv(); }
// compare
bool operator==(const ModInt& b) const { return val == b.val; }
bool operator!=(const ModInt& b) const { return val != b.val; }
bool operator<(const ModInt& b) const { return val < b.val; }
bool operator<=(const ModInt& b) const { return val <= b.val; }
bool operator>(const ModInt& b) const { return val > b.val; }
bool operator>=(const ModInt& b) const { return val >= b.val; }
// I/O
friend std::istream& operator>>(std::istream& is, ModInt& x) noexcept {
lint v;
is >> v;
x = v;
return is;
}
friend std::ostream& operator<<(std::ostream& os, const ModInt& x) noexcept { return os << x.val; }
};
template <class T>
struct Combination {
int max_n;
std::vector<T> f, invf;
explicit Combination(int n)
: max_n(n), f(n + 1), invf(n + 1) {
f[0] = 1;
for (int i = 1; i <= n; ++i) {
f[i] = f[i - 1] * i;
}
invf[max_n] = f[max_n].inv();
for (int i = max_n - 1; i >= 0; --i) {
invf[i] = invf[i + 1] * (i + 1);
}
}
T fact(int n) const { return n < 0 ? T(0) : f[n]; }
T invfact(int n) const { return n < 0 ? T(0) : invf[n]; }
T perm(int a, int b) const {
return a < b || b < 0 ? T(0) : f[a] * invf[a - b];
}
T binom(int a, int b) const {
return a < b || b < 0 ? T(0) : f[a] * invf[a - b] * invf[b];
}
};
template <int MOD, int Root>
struct NumberTheoreticalTransform {
using mint = ModInt<MOD>;
using mints = std::vector<mint>;
std::vector<mint> zetas;
explicit NumberTheoreticalTransform() {
int exp = MOD - 1;
while (true) {
mint zeta = mint(Root).pow(exp);
zetas.push_back(zeta);
if (exp % 2 != 0) break;
exp /= 2;
}
}
// ceil(log_2 n)
static int clog2(int n) {
int k = 0;
while ((1 << k) < n) ++k;
return k;
}
// cooley-tukey algorithm without bit reverse
void ntt(mints& f, bool isinv) const {
int n = f.size();
auto zeta = zetas[clog2(n)];
if (isinv) zeta = zeta.inv();
for (int b = n; b > 1; b >>= 1, zeta *= zeta) {
mint zetapow = 1;
for (int i = 0; i < b / 2; ++i) {
for (int j = i; j < n; j += b) {
auto l = f[j], r = f[j + b / 2];
f[j] = l - r * zetapow;
f[j + b / 2] = l + r * zetapow;
}
zetapow *= zeta;
}
}
if (isinv) {
std::reverse(f.begin() + 1, f.end());
auto ninv = mint(f.size()).inv();
for (auto& x : f) x *= ninv;
}
}
mints convolute(mints f, mints g) const {
int fsz = f.size(),
gsz = g.size();
// simple convolution in small cases
if (std::min(fsz, gsz) < 30) {
mints ret(fsz + gsz - 1, 0);
for (int i = 0; i < fsz; ++i) {
for (int j = 0; j < gsz; ++j) {
ret[i + j] += f[i] * g[j];
}
}
return ret;
}
int n = 1 << clog2(fsz + gsz - 1);
f.resize(n, mint(0));
g.resize(n, mint(0));
ntt(f, false);
ntt(g, false);
for (int i = 0; i < n; ++i) f[i] *= g[i];
ntt(f, true);
f.resize(fsz + gsz - 1);
return f;
}
};
constexpr int MOD = 998244353;
using mint = ModInt<MOD>;
const Combination<mint> C(300000);
const NumberTheoreticalTransform<MOD, 3> NTT;
void solve() {
std::string s;
std::cin >> s;
std::vector<int> cnt(26, 0);
for (char c : s) ++cnt[c - 'a'];
std::vector<mint> f{1};
for (auto d : cnt) {
std::vector<mint> g(d + 1);
for (int i = 0; i <= d; ++i) g[i] = C.invfact(i);
f = NTT.convolute(f, g);
}
mint ans = 0;
for (int i = 1; i < (int)f.size(); ++i) {
ans += f[i] * C.fact(i);
}
std::cout << ans << "\n";
}
int main() {
std::cin.tie(nullptr);
std::ios::sync_with_stdio(false);
solve();
return 0;
}