結果
問題 | No.1195 数え上げを愛したい(文字列編) |
ユーザー | Mister |
提出日時 | 2020-08-23 08:35:53 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 1,074 ms / 3,000 ms |
コード長 | 6,112 bytes |
コンパイル時間 | 950 ms |
コンパイル使用メモリ | 88,044 KB |
実行使用メモリ | 12,176 KB |
最終ジャッジ日時 | 2024-10-15 18:01:42 |
合計ジャッジ時間 | 15,702 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1,069 ms
12,176 KB |
testcase_01 | AC | 1,056 ms
12,044 KB |
testcase_02 | AC | 1,074 ms
12,172 KB |
testcase_03 | AC | 93 ms
7,216 KB |
testcase_04 | AC | 102 ms
7,368 KB |
testcase_05 | AC | 33 ms
8,976 KB |
testcase_06 | AC | 6 ms
6,816 KB |
testcase_07 | AC | 6 ms
6,816 KB |
testcase_08 | AC | 139 ms
6,816 KB |
testcase_09 | AC | 1,008 ms
12,040 KB |
testcase_10 | AC | 519 ms
8,796 KB |
testcase_11 | AC | 906 ms
12,020 KB |
testcase_12 | AC | 838 ms
11,872 KB |
testcase_13 | AC | 670 ms
8,860 KB |
testcase_14 | AC | 414 ms
9,280 KB |
testcase_15 | AC | 488 ms
8,796 KB |
testcase_16 | AC | 427 ms
8,772 KB |
testcase_17 | AC | 141 ms
6,820 KB |
testcase_18 | AC | 831 ms
11,872 KB |
testcase_19 | AC | 839 ms
12,000 KB |
testcase_20 | AC | 687 ms
8,740 KB |
testcase_21 | AC | 896 ms
11,888 KB |
testcase_22 | AC | 634 ms
8,852 KB |
testcase_23 | AC | 6 ms
6,816 KB |
testcase_24 | AC | 6 ms
6,816 KB |
testcase_25 | AC | 6 ms
6,816 KB |
ソースコード
#include <iostream> #include <algorithm> #include <vector> #include <string> template <int MOD> struct ModInt { using lint = long long; int val; // constructor ModInt(lint v = 0) : val(v % MOD) { if (val < 0) val += MOD; }; // unary operator ModInt operator+() const { return ModInt(val); } ModInt operator-() const { return ModInt(MOD - val); } ModInt inv() const { return this->pow(MOD - 2); } // arithmetic ModInt operator+(const ModInt& x) const { return ModInt(*this) += x; } ModInt operator-(const ModInt& x) const { return ModInt(*this) -= x; } ModInt operator*(const ModInt& x) const { return ModInt(*this) *= x; } ModInt operator/(const ModInt& x) const { return ModInt(*this) /= x; } ModInt pow(lint n) const { auto x = ModInt(1); auto b = *this; while (n > 0) { if (n & 1) x *= b; n >>= 1; b *= b; } return x; } // compound assignment ModInt& operator+=(const ModInt& x) { if ((val += x.val) >= MOD) val -= MOD; return *this; } ModInt& operator-=(const ModInt& x) { if ((val -= x.val) < 0) val += MOD; return *this; } ModInt& operator*=(const ModInt& x) { val = lint(val) * x.val % MOD; return *this; } ModInt& operator/=(const ModInt& x) { return *this *= x.inv(); } // compare bool operator==(const ModInt& b) const { return val == b.val; } bool operator!=(const ModInt& b) const { return val != b.val; } bool operator<(const ModInt& b) const { return val < b.val; } bool operator<=(const ModInt& b) const { return val <= b.val; } bool operator>(const ModInt& b) const { return val > b.val; } bool operator>=(const ModInt& b) const { return val >= b.val; } // I/O friend std::istream& operator>>(std::istream& is, ModInt& x) noexcept { lint v; is >> v; x = v; return is; } friend std::ostream& operator<<(std::ostream& os, const ModInt& x) noexcept { return os << x.val; } }; template <class T> struct Combination { int max_n; std::vector<T> f, invf; explicit Combination(int n) : max_n(n), f(n + 1), invf(n + 1) { f[0] = 1; for (int i = 1; i <= n; ++i) { f[i] = f[i - 1] * i; } invf[max_n] = f[max_n].inv(); for (int i = max_n - 1; i >= 0; --i) { invf[i] = invf[i + 1] * (i + 1); } } T fact(int n) const { return n < 0 ? T(0) : f[n]; } T invfact(int n) const { return n < 0 ? T(0) : invf[n]; } T perm(int a, int b) const { return a < b || b < 0 ? T(0) : f[a] * invf[a - b]; } T binom(int a, int b) const { return a < b || b < 0 ? T(0) : f[a] * invf[a - b] * invf[b]; } }; template <int MOD, int Root> struct NumberTheoreticalTransform { using mint = ModInt<MOD>; using mints = std::vector<mint>; std::vector<mint> zetas; explicit NumberTheoreticalTransform() { int exp = MOD - 1; while (true) { mint zeta = mint(Root).pow(exp); zetas.push_back(zeta); if (exp % 2 != 0) break; exp /= 2; } } // ceil(log_2 n) static int clog2(int n) { int k = 0; while ((1 << k) < n) ++k; return k; } // cooley-tukey algorithm without bit reverse void ntt(mints& f, bool isinv) const { int n = f.size(); if (!isinv) { for (int b = n / 2; b >= 1; b >>= 1) { auto zeta = zetas[clog2(b) + 1]; mint zetapow = 1; for (int j = 0; j < b; ++j) { for (int i = 0; i < n; i += b * 2) { auto l = f[i + j + 0], r = f[i + j + b]; f[i + j + 0] = l + r; f[i + j + b] = (l - r) * zetapow; } zetapow *= zeta; } } } else { for (int b = 1; b <= n / 2; b <<= 1) { auto zeta = zetas[clog2(b) + 1].inv(); mint zetapow = 1; for (int j = 0; j < b; ++j) { for (int i = 0; i < n; i += b * 2) { auto l = f[i + j + 0], r = f[i + j + b] * zetapow; f[i + j + 0] = l + r; f[i + j + b] = l - r; } zetapow *= zeta; } } auto ninv = mint(n).inv(); for (auto& x : f) x *= ninv; } } mints convolute(mints f, mints g) const { int fsz = f.size(), gsz = g.size(); // simple convolution in small cases if (std::min(fsz, gsz) < 30) { mints ret(fsz + gsz - 1, 0); for (int i = 0; i < fsz; ++i) { for (int j = 0; j < gsz; ++j) { ret[i + j] += f[i] * g[j]; } } return ret; } int n = 1 << clog2(fsz + gsz - 1); f.resize(n, mint(0)); g.resize(n, mint(0)); ntt(f, false); ntt(g, false); for (int i = 0; i < n; ++i) f[i] *= g[i]; ntt(f, true); f.resize(fsz + gsz - 1); return f; } }; constexpr int MOD = 998244353; using mint = ModInt<MOD>; const Combination<mint> C(300000); const NumberTheoreticalTransform<MOD, 3> NTT; void solve() { std::string s; std::cin >> s; std::vector<int> cnt(26, 0); for (char c : s) ++cnt[c - 'a']; std::vector<mint> f{1}; for (auto d : cnt) { std::vector<mint> g(d + 1); for (int i = 0; i <= d; ++i) g[i] = C.invfact(i); f = NTT.convolute(f, g); } mint ans = 0; for (int i = 1; i < (int)f.size(); ++i) { ans += f[i] * C.fact(i); } std::cout << ans << "\n"; } int main() { std::cin.tie(nullptr); std::ios::sync_with_stdio(false); solve(); return 0; }