結果
| 問題 |
No.1195 数え上げを愛したい(文字列編)
|
| コンテスト | |
| ユーザー |
Forested
|
| 提出日時 | 2020-08-24 16:36:20 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 2,917 ms / 3,000 ms |
| コード長 | 4,588 bytes |
| コンパイル時間 | 9,108 ms |
| コンパイル使用メモリ | 266,436 KB |
| 最終ジャッジ日時 | 2025-01-13 13:27:28 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 26 |
ソースコード
// Template
#include <bits/stdc++.h>
#define rep_override(x, y, z, name, ...) name
#define rep2(i, n) for (int i = 0; i < (int)(n); ++i)
#define rep3(i, l, r) for (int i = (int)(l); i < (int)(r); ++i)
#define rep(...) rep_override(__VA_ARGS__, rep3, rep2)(__VA_ARGS__)
#define per(i, n) for (int i = (int)(n) - 1; i >= 0; --i)
#define all(x) (x).begin(), (x).end()
using namespace std;
using ll = long long;
constexpr int inf = 1001001001;
constexpr ll INF = 3003003003003003003;
template <typename T> inline bool chmin(T& x, const T& y) {if (x > y) {x = y; return 1;} return 0;}
template <typename T> inline bool chmax(T& x, const T& y) {if (x < y) {x = y; return 1;} return 0;}
struct IOSET {IOSET() {cin.tie(0); ios::sync_with_stdio(0); cout << fixed << setprecision(10);}} ioset;
// Number-Theoretical Transform
// for example, (998244353, 31), (1012924417, 198), (1811939329, 136)
template <int mod, int base>
struct NumberTheoreticalTransform {
vector<ll> zeta, inv_zeta;
NumberTheoreticalTransform() {
size_t exponents = 0;
int tmp = mod - 1;
while (not (tmp & 1)) {
tmp >>= 1;
++exponents;
}
zeta.resize(exponents + 1);
inv_zeta.resize(exponents + 1);
zeta[exponents] = base;
inv_zeta[exponents] = mod_pow(base, mod - 2);
for (size_t i = exponents; i > 0; --i) {
zeta[i - 1] = zeta[i] * zeta[i] % mod;
inv_zeta[i - 1] = inv_zeta[i] * inv_zeta[i] % mod;
}
}
ll mod_pow(ll x, ll y) {
if (not y) return 1;
ll a = mod_pow(x, y >> 1);
if (y & 1) return a * a % mod * x % mod;
return a * a % mod;
}
inline ll add(ll x, ll y) {
if ((x += y) >= mod) x -= mod;
return x;
}
void dft(vector<ll> &a, size_t exponents) {
size_t m = 1 << exponents, now_e = exponents;
while (m > 1) {
for (size_t i = 0; i < a.size() / m; ++i) {
ll now = 1;
for (size_t j = 0; j < m / 2; ++j) {
ll l = a[m * i + j];
ll r = a[m * i + j + m / 2];
a[m * i + j] = add(l, r);
a[m * i + j + m / 2] = add(l, mod - r) * now % mod;
now = now * zeta[now_e] % mod;
}
}
m >>= 1;
--now_e;
}
}
void idft(vector<ll> &a, size_t exponents) {
size_t m = 2, now_e = 1;
while (m <= a.size()) {
for (size_t i = 0; i < a.size() / m; ++i) {
ll now = 1;
for (size_t j = 0; j < m / 2; ++j) {
ll l = a[m * i + j];
ll r = a[m * i + j + m / 2] * now % mod;
a[m * i + j] = add(l, r);
a[m * i + j + m / 2] = add(l, mod - r);
now = now * inv_zeta[now_e] % mod;
}
}
m <<= 1;
++now_e;
}
}
vector<ll> multiply(vector<ll> f, vector<ll> g) {
size_t siz = 1, exp = 0;
while (siz < f.size() + g.size()) {
siz *= 2;
++exp;
}
vector<ll> nf(siz, 0), ng(siz, 0);
for (size_t i = 0; i < f.size(); ++i) nf[i] = f[i];
for (size_t i = 0; i < g.size(); ++i) ng[i] = g[i];
dft(nf, exp);
dft(ng, exp);
for (size_t i = 0; i < siz; ++i) nf[i] = nf[i] * ng[i] % mod;
idft(nf, exp);
ll inv = mod_pow(siz, mod - 2);
for (size_t i = 0; i < siz; ++i) nf[i] = nf[i] * inv % mod;
return nf;
}
};
// Main
constexpr int MOD = 998244353, ROOT = 31;
int main() {
NumberTheoreticalTransform<MOD, ROOT> ntt;
string s;
cin >> s;
vector<int> cnt(26, 0);
for (char c: s) ++cnt[c - 'a'];
// sort(all(cnt));
vector<ll> fact(s.size() + 1), inv_fact(s.size() + 1);
fact[0] = 1;
rep(i, s.size()) fact[i + 1] = fact[i] * (i + 1) % MOD;
inv_fact[s.size()] = ntt.mod_pow(fact[s.size()], MOD - 2);
per(i, s.size()) inv_fact[i] = inv_fact[i + 1] * (i + 1) % MOD;
vector<ll> dp(s.size() + 1, 0);
dp[0] = 1;
rep(i, 26) {
vector<ll> f(s.size() + 1), g(cnt[i] + 1);
rep(j, s.size() + 1) f[j] = dp[j] * inv_fact[j] % MOD;
rep(j, cnt[i] + 1) g[j] = inv_fact[j] % MOD;
vector<ll> m = ntt.multiply(f, g);
rep(i, s.size() + 1) dp[i] = m[i] * fact[i] % MOD;
}
ll ans = 0;
rep(i, 1, s.size() + 1) ans += dp[i];
ans %= MOD;
cout << ans << "\n";
return 0;
}
Forested