結果
| 問題 |
No.303 割れません
|
| ユーザー |
heno239
|
| 提出日時 | 2020-08-24 20:35:51 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 9,196 bytes |
| コンパイル時間 | 2,224 ms |
| コンパイル使用メモリ | 141,016 KB |
| 実行使用メモリ | 7,880 KB |
| 最終ジャッジ日時 | 2024-11-06 10:38:32 |
| 合計ジャッジ時間 | 3,416 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | WA * 14 |
ソースコード
#include<iostream>
#include<string>
#include<cstdio>
#include<vector>
#include<cmath>
#include<algorithm>
#include<functional>
#include<iomanip>
#include<queue>
#include<ciso646>
#include<random>
#include<map>
#include<set>
#include<bitset>
#include<stack>
#include<unordered_map>
#include<utility>
#include<cassert>
#include<complex>
#include<numeric>
#include<array>
using namespace std;
//#define int long long
typedef long long ll;
typedef unsigned long long ul;
typedef unsigned int ui;
constexpr ll mod = 1000000007;
const ll INF = mod * mod;
typedef pair<int, int>P;
#define stop char nyaa;cin>>nyaa;
#define rep(i,n) for(int i=0;i<n;i++)
#define per(i,n) for(int i=n-1;i>=0;i--)
#define Rep(i,sta,n) for(int i=sta;i<n;i++)
#define rep1(i,n) for(int i=1;i<=n;i++)
#define per1(i,n) for(int i=n;i>=1;i--)
#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)
#define all(v) (v).begin(),(v).end()
typedef pair<ll, ll> LP;
typedef double ld;
typedef pair<ld, ld> LDP;
const ld eps = 1e-12;
const ld pi = acosl(-1.0);
ll mod_pow(ll x, ll n, ll m) {
ll res = 1;
while (n) {
if (n & 1)res = res * x % m;
x = x * x % m; n >>= 1;
}
return res;
}
struct modint {
ll n;
modint() :n(0) { ; }
modint(ll m) :n(m) {
if (n >= mod)n %= mod;
else if (n < 0)n = (n % mod + mod) % mod;
}
operator int() { return n; }
};
bool operator==(modint a, modint b) { return a.n == b.n; }
modint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }
modint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }
modint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }
modint operator+(modint a, modint b) { return a += b; }
modint operator-(modint a, modint b) { return a -= b; }
modint operator*(modint a, modint b) { return a *= b; }
modint operator^(modint a, ll n) {
if (n == 0)return modint(1);
modint res = (a * a) ^ (n / 2);
if (n % 2)res = res * a;
return res;
}
ll inv(ll a, ll p) {
return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);
}
modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }
const int max_n = 1 << 18;
modint fact[max_n], factinv[max_n];
void init_f() {
fact[0] = modint(1);
for (int i = 0; i < max_n - 1; i++) {
fact[i + 1] = fact[i] * modint(i + 1);
}
factinv[max_n - 1] = modint(1) / fact[max_n - 1];
for (int i = max_n - 2; i >= 0; i--) {
factinv[i] = factinv[i + 1] * modint(i + 1);
}
}
modint comb(int a, int b) {
if (a < 0 || b < 0 || a < b)return 0;
return fact[a] * factinv[b] * factinv[a - b];
}
LDP operator*(const LDP& a, const LDP& b) {
return LDP{ a.first * b.first - a.second * b.second , a.first * b.second + a.second * b.first };
}
LDP operator+(const LDP& a, const LDP& b) {
return LDP{ a.first + b.first,a.second + b.second };
}
LDP operator-(const LDP& a, const LDP& b) {
return LDP{ a.first - b.first,a.second - b.second };
}
//非再帰
//eps=0.01を忘れずに
typedef vector<LDP> poly;
poly dft(poly f, bool inverse = false) {
int n = f.size(); int i, j, k;
//bit左右反転
for (i = 0, j = 1; j < n - 1; j++) {
for (k = n >> 1; k > (i ^= k); k >>= 1);
if (i > j)swap(f[i], f[j]);
}
for (int m = 2; m <= n; m *= 2) {
LDP zeta = { cos(2 * pi / (ld)m), sin(2 * pi / (ld)m) };
if (inverse) {
zeta = { cos(2 * pi * (m - 1) / (ld)m), sin(2 * pi * (m - 1) / (ld)m) };
}
for (i = 0; i < n; i += m) {
LDP powzeta = { 1,0 };
for (k = i; k < i + m / 2; k++) {
LDP t1 = f[k], t2 = powzeta * f[k + m / 2];
f[k] = t1 + t2; f[k + m / 2] = t1 - t2;
powzeta = powzeta * zeta;
}
}
}
if (inverse) {
for (i = 0; i < n; i++) {
f[i].first /= (ld)n;
f[i].second /= (ld)n;
}
}
return f;
}
poly multiply(poly g, poly h) {
int n = 1; int sz = g.size() + h.size();
while (n <= sz)n *= 2;
while (g.size() < n) {
g.push_back({ 0,0 });
}
while (h.size() < n) {
h.push_back({ 0,0 });
}
poly gg = dft(g);
poly hh = dft(h);
poly ff;
rep(i, n) {
ff.push_back(gg[i] * hh[i]);
}
return dft(ff, true);
}
struct bigint {
using vll = vector<ll>;
constexpr static ll base = 1000000000;
constexpr static ll base_digits = 9;
vll a;
ll sign;
bigint() :sign(1) {}
bigint(ll v) { *this = v; }
bigint(const string& s) { read(s); }
void read(const string& s) {
sign = 1;
a.clear();
int pos = 0;
while (pos < s.size() && (s[pos] == '-' || s[pos] == '+')) {
if (s[pos] == '-')sign = -sign;
pos++;
}
for (int i = s.size() - 1; i >= pos; i -= base_digits) {
ll x = 0;
int le = i - base_digits + 1;
if (le < pos)le = pos;
for (int j = le; j <= i; j++) {
x = x * 10 + s[j] - '0';
}
a.push_back(x);
}
trim();
}
friend istream& operator>>(istream& stream, bigint& v) {
string s; stream >> s;
v.read(s);
return stream;
}
friend ostream& operator<<(ostream& stream, const bigint& v) {
if (v.sign == -1)stream << '-';
if (v.a.size())stream << v.a.back();
for (int i = (int)v.a.size() - 2; i >= 0; --i) {
stream << setw(base_digits) << setfill('0') << v.a[i];
}
return stream;
}
void operator=(ll v) {
sign = 1;
if (v < 0)sign = -1, v = -v;
while (v > 0) {
a.push_back(v % base); v /= base;
}
}
void trim() {
while (!a.empty() && a.back() == 0)a.pop_back();
if (a.empty())sign = 1;
}
bigint operator-()const {
bigint res = *this;
res.sign = -sign;
return res;
}
bigint abs()const {
bigint res = *this;
res.sign *= res.sign;
return res;
}
bool operator<(const bigint& v)const {
if (sign != v.sign)return sign < v.sign;
if (a.size() != v.a.size())return a.size() * sign < v.a.size()* v.sign;
per(i, (int)a.size()) {
if (a[i] != v.a[i])return a[i] * sign < v.a[i] * sign;
}
return false;
}
//comparation
bool operator>(const bigint& v)const {
return v < *this;
}
bool operator<=(const bigint& v)const {
return !(v < *this);
}
bool operator>=(const bigint& v)const {
return !(*this < v);
}
bool operator==(const bigint& v)const {
return !(*this < v) && !(v < *this);
}
bool operator!=(const bigint& v)const {
return *this < v || v < *this;
}
//calcuration
bigint operator+(const bigint& v)const {
if (sign == v.sign) {
bigint res = v;
ll c = 0;
int i = 0;
while (i < a.size() || i < v.a.size() || c>0) {
if (i == res.a.size())res.a.push_back(0);
if (i < a.size())res.a[i] += a[i];
c = res.a[i] >= base;
if (c)res.a[i] -= base;
i++;
}
return res;
}
return *this - (-v);
}
bigint operator-(const bigint& v)const {
if (sign == v.sign) {
if (abs() >= v.abs()) {
bigint res = *this;
int c = 0;
int i = 0;
while (i < v.a.size() || c) {
res.a[i] -= c;
if (i < v.a.size())res.a[i] -= v.a[i];
c = res.a[i] < 0;
if (c)res.a[i] += base;
i++;
}
res.trim();
return res;
}
return -(v - *this);
}
return *this + (-v);
}
static vll convert_base(const vll& a, ll old_digits, ll new_digits) {
vll p(max(old_digits, new_digits) + 1);
p[0] = 1;
for (int i = 1; i < p.size(); i++)p[i] = p[i - 1] * 10;
vll res;
ll cur = 0;
int cur_digits = 0;
rep(i, a.size()) {
cur += a[i] * p[cur_digits];
cur_digits += old_digits;
while (cur_digits >= new_digits) {
res.push_back(signed(cur % p[new_digits]));
cur /= p[new_digits];
cur_digits -= new_digits;
}
}
res.push_back((signed)cur);
while (!res.empty() && res.back())res.pop_back();
return res;
}
bigint operator*(const bigint& v)const {
constexpr static ll nbase = 10000;
constexpr static ll nbase_digits = 4;
vll a = convert_base(this->a, base_digits, nbase_digits);
vll b = convert_base(v.a, base_digits, nbase_digits);
if (a.empty())a.push_back(0);
if (b.empty())b.push_back(0);
poly p(a.size()); rep(i, a.size())p[i] = { a[i],0 };
poly q(b.size()); rep(i, b.size())q[i] = { b[i],0 };
poly r = multiply(p,q);
bigint res;
res.sign = sign * v.sign;
int i = 0;ll c = 0;
rep(i, r.size()) {
ll cur = (r[i].first+0.01) + c;
res.a.push_back(cur % nbase);
c = cur / nbase;
if (i + 1 == r.size() && c > 0)r.push_back({ 0,0 });
}
res.a = convert_base(res.a, nbase_digits, base_digits);
res.trim();
return res;
}
};
typedef vector<vector<bigint>> mat;
typedef vector<bigint> vec;
mat mtmul(mat& A, mat& B) {
mat C(A.size(), vec(B[0].size()));
rep(i, (int)A.size()) {
rep(k, (int)B.size()) {
rep(j, (int)B[0].size()) {
C[i][j] = (C[i][j] + (A[i][k] * B[k][j]));
}
}
}
return C;
}
mat mtpow(mat A, ll n) {
mat B(A.size(), vec(A.size()));
rep(i, (int)A.size()) {
B[i][i] = 1;
}
while (n > 0) {
if (n & (ll)1)B = mtmul(B, A);
A = mtmul(A, A);
n >>= 1;
}
return B;
}
bigint dp[2];
bigint calc(ll n) {
mat A = { {1,1},{1,0} };
A = mtpow(A, n);
return A[0][1];
}
void solve() {
ll n; cin >> n;
if (n == 2) {
cout << "INF\n";
cout << 0 << "\n";
return;
}
bigint ans = calc(n);
bigint p = calc(n / 2);
if (n % 2 == 0)ans = ans - calc(n / 2) * calc(n / 2);
cout << n << "\n";
cout << ans << "\n";
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(0);
//cout << fixed << setprecision(15);
//init_f();
//expr();
//int t; cin >> t; rep(i, t)
solve();
return 0;
}
heno239