結果

問題 No.1189 Sum is XOR
ユーザー HaarHaar
提出日時 2020-08-24 22:12:56
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 27 ms / 2,000 ms
コード長 3,955 bytes
コンパイル時間 2,003 ms
コンパイル使用メモリ 203,448 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-11-06 10:48:13
合計ジャッジ時間 3,298 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 27 ms
5,248 KB
testcase_01 AC 23 ms
5,248 KB
testcase_02 AC 22 ms
5,248 KB
testcase_03 AC 9 ms
5,248 KB
testcase_04 AC 8 ms
5,248 KB
testcase_05 AC 13 ms
5,248 KB
testcase_06 AC 17 ms
5,248 KB
testcase_07 AC 10 ms
5,248 KB
testcase_08 AC 6 ms
5,248 KB
testcase_09 AC 6 ms
5,248 KB
testcase_10 AC 5 ms
5,248 KB
testcase_11 AC 12 ms
5,248 KB
testcase_12 AC 21 ms
5,248 KB
testcase_13 AC 25 ms
5,248 KB
testcase_14 AC 19 ms
5,248 KB
testcase_15 AC 16 ms
5,248 KB
testcase_16 AC 18 ms
5,248 KB
testcase_17 AC 13 ms
5,248 KB
testcase_18 AC 13 ms
5,248 KB
testcase_19 AC 23 ms
5,248 KB
testcase_20 AC 25 ms
5,248 KB
testcase_21 AC 5 ms
5,248 KB
testcase_22 AC 5 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>

/**
 * @title Modint
 * @docs mint.md
 */
template <int32_t M> class ModInt{
public:
  constexpr static int32_t MOD = M;
  uint32_t val;
  
  constexpr ModInt(): val(0){}
  constexpr ModInt(int64_t n){
    if(n >= M) val = n % M;
    else if(n < 0) val = n % M + M;
    else val = n;
  }
  
  constexpr auto& operator=(const ModInt &a){val = a.val; return *this;}
  constexpr auto& operator+=(const ModInt &a){
    if(val + a.val >= M) val = (uint64_t)val + a.val - M;
    else val += a.val;
    return *this;
  }
  constexpr auto& operator-=(const ModInt &a){
    if(val < a.val) val += M;
    val -= a.val;
    return *this;
  }
  constexpr auto& operator*=(const ModInt &a){
    val = (uint64_t)val * a.val % M;
    return *this;
  }
  constexpr auto& operator/=(const ModInt &a){
    val = (uint64_t)val * a.inv().val % M;
    return *this;
  }

  constexpr auto operator+(const ModInt &a) const {return ModInt(*this) += a;}
  constexpr auto operator-(const ModInt &a) const {return ModInt(*this) -= a;}
  constexpr auto operator*(const ModInt &a) const {return ModInt(*this) *= a;}
  constexpr auto operator/(const ModInt &a) const {return ModInt(*this) /= a;}
  
  constexpr bool operator==(const ModInt &a) const {return val == a.val;}
  constexpr bool operator!=(const ModInt &a) const {return val != a.val;}
  
  constexpr auto& operator++(){*this += 1; return *this;}
  constexpr auto& operator--(){*this -= 1; return *this;}
  
  constexpr auto operator++(int){auto t = *this; *this += 1; return t;}
  constexpr auto operator--(int){auto t = *this; *this -= 1; return t;}
  
  constexpr static ModInt power(int64_t n, int64_t p){
    if(p < 0) return power(n, -p).inv();
    
    int64_t ret = 1, e = n % M;
    for(; p; (e *= e) %= M, p >>= 1) if(p & 1) (ret *= e) %= M;
    return ret;
  }
  
  constexpr static ModInt inv(int64_t a){
    int64_t b = M, u = 1, v = 0;
    
    while(b){
      int64_t t = a / b;
      a -= t * b; std::swap(a,b);
      u -= t * v; std::swap(u,v);
    }
    
    u %= M;
    if(u < 0) u += M;
    
    return u;
  }
  
  constexpr static auto frac(int64_t a, int64_t b){return ModInt(a) / ModInt(b);}
  
  constexpr auto power(int64_t p) const {return power(val, p);}
  constexpr auto inv() const {return inv(val);}
  
  friend constexpr auto operator-(const ModInt &a){return ModInt(M-a.val);}
  
  friend constexpr auto operator+(int64_t a, const ModInt &b){return ModInt(a) + b;}
  friend constexpr auto operator-(int64_t a, const ModInt &b){return ModInt(a) - b;}
  friend constexpr auto operator*(int64_t a, const ModInt &b){return ModInt(a) * b;}
  friend constexpr auto operator/(int64_t a, const ModInt &b){return ModInt(a) / b;}
  
  friend std::istream& operator>>(std::istream &s, ModInt<M> &a){s >> a.val; return s;}
  friend std::ostream& operator<<(std::ostream &s, const ModInt<M> &a){s << a.val; return s;}

  template <int N>
  static auto div(){
    static auto value = inv(N);
    return value;
  }

  explicit operator int32_t() const noexcept {return val;}
  explicit operator int64_t() const noexcept {return val;}
};


namespace solver{
  using mint = ModInt<998244353>;
  constexpr int MAX = 1 << 10;
  static int count[MAX];
  static mint dp[11][MAX];
  
  void solve(){
    std::cin.tie(0);
    std::ios::sync_with_stdio(false);

    int N, K; std::cin >> N >> K;
    std::vector<int> A(N);
    for(int i = 0; i < N; ++i) std::cin >> A[i];

    
    mint ans = 0;

    if(K <= 10){
      for(int i = 0; i < N; ++i) count[A[i]] += 1;

      dp[0][0] = 1;

      for(int i = 0; i < K; ++i){
        for(int j = 0; j < MAX; ++j){
          for(int k = 0; k < MAX; ++k){
            if(j + k == (j ^ k)) dp[i + 1][j + k] += dp[i][j] * count[k];
          }
        }
      }

      for(int i = 0; i < MAX; ++i) ans += dp[K][i];

      for(int i = 1; i <= K; ++i) ans /= i;
    }

    std::cout << ans << "\n";
  }
}

int main(){
  solver::solve();
  return 0;
}
0