結果
問題 | No.206 数の積集合を求めるクエリ |
ユーザー | かりあげクン |
提出日時 | 2020-08-25 13:33:56 |
言語 | Nim (2.0.2) |
結果 |
AC
|
実行時間 | 400 ms / 7,000 ms |
コード長 | 3,128 bytes |
コンパイル時間 | 4,031 ms |
コンパイル使用メモリ | 66,328 KB |
実行使用メモリ | 73,480 KB |
最終ジャッジ日時 | 2024-11-06 11:17:03 |
合計ジャッジ時間 | 15,136 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 248 ms
56,908 KB |
testcase_01 | AC | 249 ms
57,148 KB |
testcase_02 | AC | 252 ms
57,004 KB |
testcase_03 | AC | 249 ms
57,028 KB |
testcase_04 | AC | 248 ms
56,876 KB |
testcase_05 | AC | 248 ms
56,924 KB |
testcase_06 | AC | 244 ms
57,156 KB |
testcase_07 | AC | 251 ms
57,168 KB |
testcase_08 | AC | 246 ms
57,200 KB |
testcase_09 | AC | 246 ms
57,244 KB |
testcase_10 | AC | 247 ms
56,904 KB |
testcase_11 | AC | 245 ms
56,960 KB |
testcase_12 | AC | 250 ms
57,328 KB |
testcase_13 | AC | 252 ms
57,180 KB |
testcase_14 | AC | 323 ms
57,156 KB |
testcase_15 | AC | 245 ms
57,056 KB |
testcase_16 | AC | 247 ms
57,152 KB |
testcase_17 | AC | 271 ms
69,976 KB |
testcase_18 | AC | 257 ms
66,444 KB |
testcase_19 | AC | 270 ms
72,328 KB |
testcase_20 | AC | 256 ms
64,560 KB |
testcase_21 | AC | 261 ms
65,592 KB |
testcase_22 | AC | 260 ms
67,552 KB |
testcase_23 | AC | 265 ms
68,440 KB |
testcase_24 | AC | 400 ms
69,592 KB |
testcase_25 | AC | 398 ms
73,480 KB |
testcase_26 | AC | 381 ms
65,984 KB |
testcase_27 | AC | 352 ms
63,128 KB |
testcase_28 | AC | 397 ms
66,372 KB |
testcase_29 | AC | 387 ms
65,380 KB |
testcase_30 | AC | 383 ms
64,000 KB |
ソースコード
import strutils import sequtils import math import lenientops type Complex* = tuple[re: float, im: float] proc complex*(x: float, y: float = 0.0): Complex {.inline.} = (x, y) proc `+`*(a: Complex, b: Complex): Complex {.inline.} = (a.re + b.re, a.im + b.im) proc `-`*(a: Complex, b: Complex): Complex {.inline.} = (a.re - b.re, a.im - b.im) proc `*`*(a: Complex, b: Complex): Complex {.inline.} = (a.re * b.re - a.im * b.im, a.re * b.im + a.im * b.re) proc `/`*(a: Complex, b: Complex): Complex {.inline.} = ( (a.re * b.re + a.im * b.im) / (b.re * b.re + b.im * b.im), (a.im * b.re - a.re * b.im) / (b.re * b.re + b.im * b.im) ) proc `*`*[T](a: Complex, k: T): Complex {.inline.} = (a.re * k, a.im * k) proc `/`*[T](a: Complex, k: T): Complex {.inline.} = (a.re / k, a.im / k) proc inv*(a: Complex): Complex {.inline.} = (a.re / a.re * a.re + a.im * a.im, -a.im / a.re * a.re + a.im * a.im) proc `+=`*(a: var Complex, b: Complex) {.inline.} = a = a + b proc `-=`*(a: var Complex, b: Complex) {.inline.} = a = a - b proc `*=`*(a: var Complex, b: Complex) {.inline.} = a = a * b proc `/=`*(a: var Complex, b: Complex) {.inline.} = a = a / b proc `*=`*[T](a: var Complex, k: T) {.inline.} = a = a * k proc `/=`*[T](a: var Complex, k: T) {.inline.} = a = a / k proc dft*(F: var seq[Complex]): seq[Complex] = let N = F.len let mask = N - 1 var tmp = newSeq[Complex](N) var i = N while i > 1: i = i shr 1 let theta = 2 * PI * i / N let zeta = complex(cos(theta), sin(theta)) var powZeta = complex(1.0) var j = 0 while j < N: for k in 0 .. i - 1: tmp[j + k] = F[((j shl 1) and mask) + k] + powZeta * F[(((j shl 1) + i) and mask) + k] powZeta *= zeta j += i swap(F, tmp) return F proc idft*(F: var seq[Complex]): seq[Complex] = let N = F.len let mask = N - 1 var tmp = newSeq[Complex](N) var i = N while i > 1: i = i shr 1 let theta = -1 * 2 * PI * i / N let zeta = complex(cos(theta), sin(theta)) var powZeta = complex(1.0) var j = 0 while j < N: for k in 0 .. i - 1: tmp[j + k] = F[((j shl 1) and mask) + k] + powZeta * F[(((j shl 1) + i) and mask) + k] powZeta *= zeta j += i swap(F, tmp) F.applyIt(it / N.float) return F proc multiply*(A: seq[Complex], B: seq[Complex]): seq[int] = let N = nextPowerOfTwo(A.high + B.high + 1) var invA = A invA.setLen(N) invA = dft(invA) var invB = B invB.setLen(N) invB = dft(invB) var invF = newSeq[Complex](N) for i in 0 .. N - 1: invF[i] = invA[i] * invB[i] let F = idft(invF).mapIt(int(round(it.re))) return F const FFT_max : int = 1 shl 18 var lmn = stdin.readLine.split.map(parseInt) A = stdin.readLine.split.map(parseInt) B = stdin.readLine.split.map(parseInt) Q = stdin.readLine.parseInt (l,m,n) = (lmn[0], lmn[1], lmn[2]) A_poly = newSeq[Complex](FFT_max) B_poly = newSeq[Complex](FFT_max) for i in 0..<l: A_poly[A[i] - 1] = (1.0, 0.0) for i in 0..<m: B_poly[n - B[i]] = (1.0, 0.0) var C = multiply(A_poly, B_poly) for i in 0..<Q: echo C[n-1+i]