結果
| 問題 |
No.340 雪の足跡
|
| コンテスト | |
| ユーザー |
T1610
|
| 提出日時 | 2020-08-25 23:41:21 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 875 ms / 1,000 ms |
| コード長 | 11,381 bytes |
| コンパイル時間 | 2,620 ms |
| コンパイル使用メモリ | 214,948 KB |
| 最終ジャッジ日時 | 2025-01-13 14:54:48 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 5 |
| other | AC * 32 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#define rep(i,n) REP(i,0,n)
#define REP(i,s,e) for(int i=(s); i<(int)(e); i++)
#define repr(i, n) REPR(i, n, 0)
#define REPR(i, s, e) for(int i=(int)(s-1); i>=(int)(e); i--)
#define all(r) r.begin(),r.end()
#define rall(r) r.rbegin(),r.rend()
typedef long long ll;
typedef vector<int> vi;
typedef vector<ll> vl;
const ll INF = 1e18;
const ll MOD = 1e9 + 7;
template<typename T> T chmax(T& a, const T& b){return a = (a > b ? a : b);}
template<typename T> T chmin(T& a, const T& b){return a = (a < b ? a : b);}
#define DEBUG_MODE
#ifdef DEBUG_MODE
#define dump(x) cout << #x << " : " << x << " "
#define dumpL(x) cout << #x << " : " << x << '\n'
#define LINE cout << "line : " << __LINE__ << " "
#define LINEL cout << "line : " << __LINE__ << '\n'
#define dumpV(v) cout << #v << " : ["; for(auto& t : v) cout << t << ", "; cout<<"]" << " "
#define dumpVL(v) cout << #v << " : ["; for(auto& t : v) cout << t << ", "; cout<<"]" << endl
#define STOP assert(false)
#else
#define dump(x)
#define dumpL(x)
#define LINE
#define LINEL
#define dumpV(v)
#define dumpVL(v)
#define STOP assert(false)
#endif
#define mp make_pair
namespace std {
template<class S, class T>
ostream &operator <<(ostream& out, const pair<S, T>& a) {
out << '(' << a.fi << ", " << a.se << ')';
return out;
}
}
//有向、無向グラフ共通クラス(隣接リスト)
struct Graph {
int n;
using WEIGHT_TYPE = long long;
const WEIGHT_TYPE INF = 1e18;
struct Edge {
int to;
WEIGHT_TYPE weight;
};
struct Edge2 {
int from;
int to;
WEIGHT_TYPE weight;
};
vector<vector<Edge>> es;
Graph(int n) : n(n), es(n) {}
// dijkstra O(E log V)
vector<WEIGHT_TYPE> dijkstra(int s) {
vector<WEIGHT_TYPE> d(n, INF);
d[s] = 0;
using P = pair<WEIGHT_TYPE, int>;
priority_queue<P, vector<P>, greater<P>> q;
q.push({0LL, s});
while(!q.empty()) {
auto p = q.top();
q.pop();
int cur = p.second;
auto cost = p.first;
if(d[cur] < p.first) continue;
for(auto &e : es[cur]) {
int to = e.to;
auto dist = e.weight + cost;
if(dist < d[to]) {
d[to] = dist;
q.push({dist, to});
}
}
}
return d;
}
// dijkstra O(V^2)
vector<WEIGHT_TYPE> dijkstra2(int s) {
vector<WEIGHT_TYPE> d(n, INF);
d[s] = 0;
vector<int> used(n);
auto mat = getEdgeMat();
while(1) {
int cur = -1;
rep(i, n) {
if(used[i]) continue;
if(cur == -1 || d[i] < d[cur]) cur = i;
}
if(cur == -1) break;
used[cur] = 1;
rep(i, n) { chmin(d[i], d[cur] + mat[cur][i]); }
}
return d;
}
// warshall_floyd O(n^3)
vector<vector<WEIGHT_TYPE>> warshall_floyd() {
// vector<vector<WEIGHT_TYPE>> d(n, vector<WEIGHT_TYPE>(n, INF));
// rep(i, n) d[i][i] = 0LL;
// rep(i, n) for (auto && e : es[i]) {
// int j = e.to;
// chmin(d[i][j], e.weight);
// }
auto d = getEdgeMat();
rep(k, n) rep(i, n) rep(j, n) { chmin(d[i][j], d[i][k] + d[k][j]); }
return d;
}
// 頂点sから到達できるか
vector<bool> getVisitable(int s) {
vector<bool> ret(n);
queue<int> q;
q.push(s);
ret[s] = true;
while(!q.empty()) {
auto cur = q.front();
q.pop();
for(auto &&e : es[cur]) {
if(!ret[e.to]) {
ret[e.to] = true;
q.push(e.to);
}
}
}
return ret;
}
// 2部グラフ判定
bool isBipartile() {
vector<int> memo(n, -1);
rep(i, n) {
if(memo[i] != -1) continue;
queue<int> q;
q.push(i);
memo[i] = 0;
while(!q.empty()) {
auto v = q.front();
q.pop();
for(auto &&e : es[v]) {
auto u = e.to;
if(memo[u] == -1) {
memo[u] = !memo[v];
q.push(u);
} else if(memo[u] == memo[v]) {
return false;
}
}
}
}
return true;
}
vector<vector<WEIGHT_TYPE>> getEdgeMat() {
vector<vector<WEIGHT_TYPE>> mat(n, vector<WEIGHT_TYPE>(n, INF));
rep(i, n) mat[i][i] = 0;
rep(i, n) {
for(auto &&e : es[i]) chmin(mat[i][e.to], e.weight);
}
return mat;
}
};
// 無向グラフ
struct GraphUD : public Graph {
GraphUD(int n) : Graph(n) {}
void add_edge(int from, int to, WEIGHT_TYPE weight) {
es[from].push_back({to, weight});
es[to].push_back({from, weight});
}
vector<Edge2> getEdge2() {
vector<Edge2> ret;
rep(i, n) for(auto &&e : es[i]) {
if(i < e.to) ret.push_back({i, e.to, e.weight});
}
return ret;
}
// 橋の検出
// http://nupioca.hatenadiary.jp/entry/2013/11/03/200006
// Calculate bridges in a undirected graph.
// Assume graph is connected and has no parallel edges or self-loops.
vector<Edge2> getBridges() {
int V = n;
// res: bridges
vector<Edge2> res;
// assume at least the first vertex exists
vector<int> low(V, -1); // lowest reacheable index
vector<int> pre(V, -1); // pre-order index
int count = 0; // pre-order index counter
// v: current node
// from: parent node
function<int(int, int)> dfs = [&](int v, int from) {
pre[v] = count++;
low[v] = pre[v];
for(auto &&e : es[v]) {
int to = e.to;
if(pre[to] == -1) {
// destination has not been visited
// visit destination and update low[v]
low[v] = min(low[v], dfs(to, v));
if(low[to] == pre[to]) {
// edge is not contained in a closed path -> bridge
res.push_back({v, to, e.weight});
}
} else {
if(from == to) {
// ignore a path to parent
continue;
}
low[v] = min(low[v], low[to]);
}
}
return low[v];
};
dfs(0, -1); // start dfs from vertex 0
return res;
}
};
// 有向グラフ
struct GraphD : public Graph {
GraphD(int n) : Graph(n) {}
void add_edge(int from, int to, WEIGHT_TYPE weight) {
es[from].push_back({to, weight});
}
vector<Edge2> getEdge2() {
vector<Edge2> ret;
rep(i, n) for(auto &&e : es[i]) { ret.push_back({i, e.to, e.weight}); }
return ret;
}
GraphD getReverseGraph() {
GraphD g(n);
rep(i, n) for(auto &&e : es[i]) { g.add_edge(e.to, i, e.weight); }
return g;
}
vector<vector<int>> scc() {
vector<vector<int>> res;
vector<int> cmp(n);
vector<int> vs;
vector<vector<int>> r_es(n);
rep(i, n) for(auto &&e : es[i]) {
int j = e.to;
r_es[j].push_back(i);
}
vector<bool> used(n);
function<void(int)> dfs = [&](int v) {
used[v] = true;
for(auto &&e : es[v]) {
int to = e.to;
if(!used[to]) dfs(to);
}
vs.push_back(v);
};
function<void(int, int)> rdfs = [&](int v, int k) {
used[v] = true;
cmp[v] = k;
for(auto &&to : r_es[v]) {
if(!used[to]) rdfs(to, k);
}
};
fill(all(used), 0);
vs.clear();
for(int v = 0; v < n; v++) {
if(!used[v]) dfs(v);
}
fill(all(used), 0);
int k = 0;
for(int i = vs.size() - 1; i >= 0; i--) {
if(!used[vs[i]]) rdfs(vs[i], k++);
}
res.clear();
res.resize(k);
for(int i = 0; i < n; i++) {
res[cmp[i]].push_back(i);
}
return res;
}
// bellmanFord 負閉路があるなら, dist[s] = INF | O(VE)
vector<WEIGHT_TYPE> bellmanFord(int s) {
vector<WEIGHT_TYPE> dist(n, INF);
dist[s] = 0;
auto es = getEdge2();
rep(i, n) {
for(auto &&e : es) {
if(dist[e.to] > dist[e.from] + e.weight) {
dist[e.to] = dist[e.from] + e.weight;
if(i == n - 1) {
dist[s] = INF;
return dist;
}
}
}
}
return dist;
}
// bellmanFord s->tの経路上に負閉路があるなら, dist[s] = INF | O(VE)
vector<WEIGHT_TYPE> bellmanFord2(int s, int t) {
vector<WEIGHT_TYPE> dist(n, INF);
auto f1 = getVisitable(s);
auto f2 = getReverseGraph().getVisitable(t);
dist[s] = 0;
auto es = getEdge2();
rep(i, n) {
for(auto &&e : es) {
if(!(f1[e.from] && f2[e.to])) continue;
if(dist[e.to] > dist[e.from] + e.weight) {
dist[e.to] = dist[e.from] + e.weight;
if(i == n - 1) {
dist[s] = INF;
return dist;
}
}
}
}
return dist;
}
};
int main(){
cin.tie(0);
ios::sync_with_stdio(false);
int w, h, n;
cin >> w >> h >> n;
vector<vi> r(w, vi(h));
vector<vi> c(h, vi(w));
rep(_, n) {
int m;
cin >> m;
++m;
vi b(m);
rep(i, m) cin >> b[i];
rep(i, m-1) {
int sx = b[i] % w, sy = b[i] / w;
int tx = b[i+1] % w, ty = b[i+1] / w;
// cout << " " << b[i] << " " << sy << " " << sx << '\n';
// cout << " " << b[i+1] << " " << ty << " " << tx << '\n';
if(sx == tx) {
if(sy > ty) swap(sy, ty);
r[sx][sy] += 1;
r[sx][ty] -= 1;
// cout << "r " << sx << " " << sy << " " << ty << '\n';
}
else {
if(sx > tx) swap(sx, tx);
c[sy][sx] += 1;
c[sy][tx] -= 1;
// cout << "c " << sy << " " << sx << " " << tx << '\n';
}
}
}
rep(i, r.size()) rep(j, r[i].size()-1) r[i][j+1] += r[i][j];
rep(i, c.size()) rep(j, c[i].size()-1) c[i][j+1] += c[i][j];
GraphUD g(h * w);
rep(x, w) rep(y, h-1) if(r[x][y]) {
int cur = y * w + x;
int nxt = cur + w;
g.add_edge(cur, nxt, +1);
}
rep(y, h) rep(x, w-1) if(c[y][x]) {
int cur = y * w + x;
int nxt = cur + 1;
g.add_edge(cur, nxt, +1);
}
auto d = g.dijkstra(0)[h * w - 1];
if(d == g.INF) cout << "Odekakedekinai.." << '\n';
else cout << d << '\n';
return 0;
}
T1610