結果
| 問題 |
No.42 貯金箱の溜息
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2020-08-26 15:31:16 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 22 ms / 5,000 ms |
| コード長 | 12,058 bytes |
| コンパイル時間 | 1,408 ms |
| コンパイル使用メモリ | 128,916 KB |
| 実行使用メモリ | 11,332 KB |
| 最終ジャッジ日時 | 2024-11-07 11:06:55 |
| 合計ジャッジ時間 | 1,693 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 3 |
ソースコード
//
// S i r o t a n w a t c h e s o v e r y o u .
//
// ...Jggg+J+JJJg@NQmgJa.....,
// ....gH@@@@HHB""""7"YYYYHMMMMMMM@@@@@@@Hma,.
// ...JH@@MMHY"! ? __""YH@@@@N&...
// ..JH@@HY"~ _TW@@@Mme.
// .Jg@@#"= _TTM@@N..
// .Jg@@MY! ?T@@@h,.
// .-@@@B! (TM@@@L
// .(H@MY ?W@@@+
// .W@@@ .T@@@[
// .d@@M! .T@@N,
// .d@M@' -W@@o.
// (@@M\ ?M@N,
// -d@M% .., .., j@@b
// d@@M= TM9 ?MD W@@[
// .H@M: .W@H,
// H@Ht ,@@#
// (@@M~ .@@h.
// .@@M% ..gmHHJ. .JdHga. .H@@e
// j@@#_ .@@@@@@@b J@@@@@@@h. .H@@\
// d@@@ .4@@@@@@MF (@@@@@@@@ H@@b
// d@@[ ?"BMY"= .d@@@@H, ?TWHHY"! d@@e
// J@@b .JJJ-.., ,@@@@@@M% ......... -@@@M.
// ?@@M\ ?YHHM@@@@b .. .W@@HP X@@HMWY"= d@@@#
// ,@@@L. ?H@Ng&+gd@@#H@@NHaJ+gH@[ J@@@]
// X@@@[ ...... ?"YYYYY"" ?"YHHHB"^ ..... (@@@#
// WH@N+. .W@@@@MHB= .TWH@M@Hmc .H@@M~
// .H@@@@N, _!~ .d@@@N,
// .J@@#T@@@N, .d@@@@@@@b.
// (@@@@! .T@@@n, .(H@@@H>.W@@@x
// (@@@F 4@@@@MaJ. .d@@@@Y77 4@@@r
//.H@@P ?TM@@@@N... .-JH@HMY= d@@N,
//(@@@F ?"WM@@@MQa-,. .(J(JN@@M#" Z@@@L
// d@@H, (M@@@@@@@Ng&maJ.... .. ...J.J+W@@@@@@HY! .dH@b
// ?M@@@N&. ..(JW@@@MM"?7""TYHMH@@HH@@@@@HHHgkHagHa(mggdmmagH@H@@Q@@HMMMHY"7!TMM@@@HaJ,. ..H@@@M^
// ?"W@@@@MN@@@@@H@@MMY" _???!"= ?WMMBYYTMH=7""Y@""?"~^ _"YM@@@@@@@@MH@@@@@#"^
// ?77WMMMYB""! _7"WWMMMY"7=
// need
#include <iostream>
#include <algorithm>
// data structure
#include <bitset>
#include <map>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include <utility>
#include <vector>
#include <complex>
//#include <deque>
#include <valarray>
#include <unordered_map>
#include <unordered_set>
#include <array>
// etc
#include <cassert>
#include <cmath>
#include <functional>
#include <iomanip>
#include <chrono>
#include <random>
#include <numeric>
#include <fstream>
//std::ifstream ifs("b.in");
//auto& scan_in = ifs;
auto& scan_in = std::cin;
// input
#define INIT std::ios::sync_with_stdio(false);std::cin.tie(0);
#define VAR(type, ...)type __VA_ARGS__;MACRO_VAR_Scan(__VA_ARGS__);
template<typename T> void MACRO_VAR_Scan(T& t) { scan_in >> t; }
template<typename First, typename...Rest>void MACRO_VAR_Scan(First& first, Rest& ...rest) { scan_in >> first; MACRO_VAR_Scan(rest...); }
#define VEC_ROW(type, n, ...)std::vector<type> __VA_ARGS__;MACRO_VEC_ROW_Init(n, __VA_ARGS__); for(int w_=0; w_<n; ++w_){MACRO_VEC_ROW_Scan(w_, __VA_ARGS__);}
template<typename T> void MACRO_VEC_ROW_Init(int n, T& t) { t.resize(n); }
template<typename First, typename...Rest>void MACRO_VEC_ROW_Init(int n, First& first, Rest& ...rest) { first.resize(n); MACRO_VEC_ROW_Init(n, rest...); }
template<typename T> void MACRO_VEC_ROW_Scan(int p, T& t) { scan_in >> t[p]; }
template<typename First, typename...Rest>void MACRO_VEC_ROW_Scan(int p, First& first, Rest& ...rest) { scan_in >> first[p]; MACRO_VEC_ROW_Scan(p, rest...); }
#define VEC(type, c, n) std::vector<type> c(n);for(auto& i:c)scan_in>>i;
#define MAT(type, c, m, n) std::vector<std::vector<type>> c(m, std::vector<type>(n));for(auto& R:c)for(auto& w:R)scan_in>>w;
// output
template<typename T>void MACRO_OUT(const T t) { std::cout << t; }
template<typename First, typename...Rest>void MACRO_OUT(const First first, const Rest...rest) { std::cout << first << " "; MACRO_OUT(rest...); }
#define OUT(...) MACRO_OUT(__VA_ARGS__);
#define FOUT(n, dist) std::cout<<std::fixed<<std::setprecision(n)<<(dist);
#define SOUT(n, c, dist) std::cout<<std::setw(n)<<std::setfill(c)<<(dist);
#define VOUT(v) for(size_t i = 0; i < v.size(); ++i) {OUT(v[i]);if(i+1<v.size()){SP}}
#define EOUT(...) do{ OUT(__VA_ARGS__)BR; exit(0); }while(0);
#define SP std::cout<<" ";
#define TAB std::cout<<"\t";
#define BR std::cout<<"\n";
#define SPBR(w, n) std::cout<<(w + 1 == n ? '\n' : ' ');
#define ENDL std::cout<<std::endl;
#define FLUSH std::cout<<std::flush;
#define SHOW(dist) {std::cerr << #dist << "\t: " << (dist) << "\n";}
// utility
#define ALL(a) (a).begin(),(a).end()
#define FOR(w, a, n) for(int w=(a);w<(n);++w)
#define REP(w, n) FOR(w, 0, n)
#define RFOR(w, a, n) for(int w=(n)-1;w>=(a);--w)
#define RREP(w, n) RFOR(w, 0, n)
template<class S, class T, class U> bool IN(S a, T x, U b) { return a <= x && x < b; }
template<class T> inline T CHMAX(T& a, const T b) { return a = (a < b) ? b : a; }
template<class T> inline T CHMIN(T& a, const T b) { return a = (a > b) ? b : a; }
// test
template<class T> using V = std::vector<T>;
template<class T> using VV = V<V<T>>;
template<typename S, typename T>
std::ostream& operator<<(std::ostream& os, const std::pair<S, T>& p) {
os << "(" << p.first << ", " << p.second << ")"; return os;
}
template<typename T>
std::ostream& operator<<(std::ostream& os, const std::vector<T>& v) {
os << "{";
for (size_t i = 0; i < v.size(); ++i) os << v[i] << ((i + 1 < v.size()) ? ", " : ""); os << "}";
return os;
}
template<typename T>
std::ostream & operator<<(std::ostream & os, const std::set<T> & v) {
os << "{";
for (auto it = v.cbegin();;) {
os << *it; ++it;
if (it == v.cend()) { os << "}"; break; }
else { os << ", "; }
}
return os;
}
template<typename S, typename T>
std::ostream& operator<<(std::ostream & os, const std::map<S, T> & m) {
os << "{";
for (auto it = m.cbegin(); it != m.cend();) { os << it->first << ":" << it->second; ++it; os << (it == m.cend() ? "" : ", "); } os << "}";
return os;
}
template<typename T>
std::ostream& operator<<(std::ostream & os, std::queue<T> q) {
os << "<";
while (!q.empty()) { os << q.front(); q.pop(); os << (q.empty() ? "<" : ", "); }
return os;
}
template<typename T>
std::ostream& operator<<(std::ostream & os, std::stack<T> q) {
os << ">";
while (!q.empty()) { os << q.top(); q.pop(); os << (q.empty() ? "]" : ", "); }
return os;
}
namespace std {
template<typename S, typename T> class numeric_limits<pair<S, T>> {
public:
static constexpr pair<S, T> max() noexcept { return { numeric_limits<S>::max(), numeric_limits<T>::max() }; }
static constexpr pair<S, T> lowest() noexcept { return { numeric_limits<S>::lowest(), numeric_limits<T>::lowest() }; }
};
}
// type/const
using i64 = std::int_fast64_t;
using u64 = std::uint_fast64_t;
using ll = long long;
using ull = unsigned long long;
using ld = long double;
using PAIR = std::pair<int, int>;
using PAIRLL = std::pair<ll, ll>;
constexpr int INFINT = (1 << 30) - 1; // 1.07x10^ 9
constexpr int INFINT_LIM = (1LL << 31) - 1; // 2.15x10^ 9
constexpr ll INFLL = 1LL << 60; // 1.15x10^18
constexpr ll INFLL_LIM = (1LL << 62) - 1 + (1LL << 62); // 9.22x10^18
constexpr double EPS = 1e-6;
constexpr i64 MOD = 1000000009;
constexpr double PI = 3.141592653589793238462643383279;
template<class T, size_t N> void FILL(T(&a)[N], const T & val) { for (auto& x : a) x = val; }
template<class ARY, size_t N, size_t M, class T> void FILL(ARY(&a)[N][M], const T & val) { for (auto& b : a) FILL(b, val); }
template<class T> void FILL(std::vector<T> & a, const T & val) { for (auto& x : a) x = val; }
template<class ARY, class T> void FILL(std::vector<std::vector<ARY>> & a, const T & val) { for (auto& b : a) FILL(b, val); }
// ------------>8---------
ll powMod(ll n, ll p, ll mod) {
ll res = 1;
while (p) {
if (p & 1) (res *= n) %= mod;
(n *= n) %= mod;
p >>= 1;
}
return res;
}
ll invMod(ll n, ll mod) {
return powMod(n, MOD - 2, MOD);
}
const signed FACT_MAX_N = 1000006;
signed fact[FACT_MAX_N];
signed factInv[FACT_MAX_N];
struct INIT_FACT {
INIT_FACT() {
fact[0] = 1;
for (int i = 1; i < FACT_MAX_N; ++i) fact[i] = (long long)i * fact[i - 1] % MOD;
factInv[FACT_MAX_N - 1] = powMod(fact[FACT_MAX_N - 1], MOD - 2, MOD);
for (int i = FACT_MAX_N - 2; i >= 0; --i) factInv[i] = (long long)(i + 1) * factInv[i + 1] % MOD;
}
} init_fact;
ll Combination(ll n, ll r) {
if (n < r) return 0;
if (n < 2 * r) r = n - r;
ll ans = factInv[r];
n %= MOD;
for (int i = 1; i <= r; ++i) (ans *= n - i + 1) %= MOD;
if (ans < 0) ans += MOD;
return ans;
}
class Polynomial {
std::vector<int> coef;
public:
Polynomial(int N) : coef(N + 1, 0) {}
Polynomial(std::initializer_list<int> a) : coef(a) {}
Polynomial& operator+=(const Polynomial& r) {
if (coef.size() < r.coef.size()) coef.resize(r.coef.size());
for (size_t i = 0; i < r.coef.size(); ++i) (coef[i] += r.coef[i]) %= MOD;
return *this;
}
Polynomial & operator*=(const Polynomial & r) { // O(N^2)
std::vector<int> c(this->coef.size() + r.coef.size() - 1);
REP(i, this->coef.size()) REP(j, r.coef.size()) c[i + j] += this->coef[i] * r.coef[j];
coef = c;
return *this;
}
/*Polynomial& operator*=(const Polynomial & r) { // O(NlogN)
auto c = NTT::mul(this->coef, r.coef, MOD);
coef = c;
return *this;
}*/
Polynomial& operator^=(long long p) {
Polynomial x(*this);
*this = Polynomial(0);
coef[0] = 1;
while (p) {
if (p & 1) (*this) *= x;
x *= x;
p >>= 1;
}
return *this;
}
int& operator[](size_t i) { return coef[i]; }
std::vector<int> getCoef() const { return coef; }
};
signed main() {
INIT;
Polynomial P(0); P[0] = 1;
for (int t : {1, 5, 10, 50, 100}) {
Polynomial q(500 - t);
for (int i = 0; i < 500; i += t) q[i] = 1;
P *= q;
}
auto Q = [&](i64 m) {
if (m < 0 || m % 500) return 0ll;
return Combination(m / 500 + 5, 5);
};
VAR(int, T);
REP(_, T) {
VAR(i64, m);
i64 ans = 0;
for (i64 k = m / 500 * 500; k >= std::max((i64)0, m - 2334); k -= 500)
(ans += P[m - k] * Q(k)) %= MOD;
OUT(ans)BR;
}
return 0;
}