結果

問題 No.1050 Zero (Maximum)
ユーザー ChanyuhChanyuh
提出日時 2020-08-26 20:57:58
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 18 ms / 2,000 ms
コード長 5,463 bytes
コンパイル時間 1,598 ms
コンパイル使用メモリ 133,292 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-11-07 13:38:14
合計ジャッジ時間 2,424 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 5 ms
5,248 KB
testcase_03 AC 4 ms
5,248 KB
testcase_04 AC 12 ms
5,248 KB
testcase_05 AC 12 ms
5,248 KB
testcase_06 AC 6 ms
5,248 KB
testcase_07 AC 7 ms
5,248 KB
testcase_08 AC 2 ms
5,248 KB
testcase_09 AC 5 ms
5,248 KB
testcase_10 AC 15 ms
5,248 KB
testcase_11 AC 11 ms
5,248 KB
testcase_12 AC 2 ms
5,248 KB
testcase_13 AC 2 ms
5,248 KB
testcase_14 AC 2 ms
5,248 KB
testcase_15 AC 2 ms
5,248 KB
testcase_16 AC 16 ms
5,248 KB
testcase_17 AC 18 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<iostream>
#include<string>
#include<cstdio>
#include<vector>
#include<cmath>
#include<algorithm>
#include<functional>
#include<iomanip>
#include<queue>
#include<ciso646>
#include<random>
#include<map>
#include<set>
#include<complex>
#include<bitset>
#include<stack>
#include<unordered_map>
#include<utility>
#include<tuple>
#include<cassert>
using namespace std;
typedef long long ll;
typedef unsigned int ui;
const ll mod = 1000000007;
const ll INF = (ll)1000000007 * 1000000007;
typedef pair<int, int> P;
#define stop char nyaa;cin>>nyaa;
#define rep(i,n) for(int i=0;i<n;i++)
#define per(i,n) for(int i=n-1;i>=0;i--)
#define Rep(i,sta,n) for(int i=sta;i<n;i++)
#define Per(i,sta,n) for(int i=n-1;i>=sta;i--)
#define rep1(i,n) for(int i=1;i<=n;i++)
#define per1(i,n) for(int i=n;i>=1;i--)
#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)
typedef long double ld;
const ld eps = 1e-8;
const ld pi = acos(-1.0);
typedef pair<ll, ll> LP;
int dx[4]={1,-1,0,0};
int dy[4]={0,0,1,-1};

template<int mod>
struct ModInt {
    long long x;
 
    ModInt() : x(0) {}
    ModInt(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

    explicit operator int() const {return x;}
 
    ModInt &operator+=(const ModInt &p) {
        if((x += p.x) >= mod) x -= mod;
        return *this;
    }
    ModInt &operator-=(const ModInt &p) {
        if((x += mod - p.x) >= mod) x -= mod;
        return *this;
    }
    ModInt &operator*=(const ModInt &p) {
        x = (int)(1LL * x * p.x % mod);
        return *this;
    }
    ModInt &operator/=(const ModInt &p) {
        *this *= p.inverse();
        return *this;
    }
 
    ModInt operator-() const { return ModInt(-x); }
    ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
    ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
    ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
    ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
 
    bool operator==(const ModInt &p) const { return x == p.x; }
    bool operator!=(const ModInt &p) const { return x != p.x; }
 
    ModInt inverse() const{
        int a = x, b = mod, u = 1, v = 0, t;
        while(b > 0) {
            t = a / b;
            a -= t * b;
            swap(a, b);
            u -= t * v;
            swap(u, v);
        }
        return ModInt(u);
    }

    ModInt power(long long p) const{
        int a = x;
        if (p==0) return 1;
        if (p==1) return ModInt(a);
        if (p%2==1) return (ModInt(a)*ModInt(a)).power(p/2)*ModInt(a);
        else return (ModInt(a)*ModInt(a)).power(p/2);
    }

    ModInt power(const ModInt p) const{
        return ((ModInt)x).power(p.x);
    }

    friend ostream &operator<<(ostream &os, const ModInt<mod> &p) {
        return os << p.x;
    }
    friend istream &operator>>(istream &is, ModInt<mod> &a) {
        long long x;
        is >> x;
        a = ModInt<mod>(x);
        return (is);
    }
};

using modint = ModInt<mod>;



template<typename T>
struct Matrix{
  vector<vector<T>> val;
  Matrix(){}
  Matrix(int n,int m,T x=0):val(n,vector<T>(m,x)){}
  Matrix(vector<vector<T>> a):val(a){}
  size_t size() const {return val.size();}
  inline vector<T>& operator [] (int i) {return val[i];}

  Matrix<T> &operator=(const vector<vector<T>> &A) {
    int n=A.size(),m=A[0].size();
    val=A;
    return *this;
  }

  Matrix<T> &operator+=(const Matrix<T> &A) {
    for (int i=0;i<val.size();++i) 
        for (int j=0;j<val[0].size();++j)
            val[i][j]=val[i][j]+A.val[i][j];   
    return *this;
  }
  Matrix<T> &operator+=(const vector<vector<T>> &A) { return *this += Matrix(A); }

  Matrix<T> &operator-=(const Matrix<T> &A) {
    for (int i=0;i<val.size();++i) 
        for (int j=0;j<val[0].size();++j)
            val[i][j]=val[i][j]-A.val[i][j];   
    return *this;
  }
  Matrix<T> &operator-=(const vector<vector<T>> &A) { return *this -= Matrix(A); }

  Matrix<T> &operator*=(const Matrix<T> &A) {
    Matrix<T> R(val.size(),A.val[0].size());
    for (int i = 0; i < val.size(); ++i) 
        for (int j = 0; j < A.val[0].size(); ++j)
            for (int k = 0; k < A.size(); ++k) 
                R[i][j] = R[i][j] + (val[i][k] * A.val[k][j]); 
    for (int i=0;i<val.size();++i) 
        for (int j=0;j<val[0].size();++j)
            val[i][j]=R.val[i][j]; 
    return *this;
  }
  Matrix<T> &operator*=(const vector<vector<T>> &A) { return *this *= Matrix(A); }

  Matrix<T> operator+(const Matrix<T> &p) const { return Matrix<T>(*this) += p; }
  Matrix<T> operator-(const Matrix<T> &p) const { return Matrix<T>(*this) -= p; }
  Matrix<T> operator*(const Matrix<T> &p) const { return Matrix<T>(*this) *= p; }

  bool operator==(const Matrix<T> &p) const { return val == p.val; }
  bool operator!=(const Matrix<T> &p) const { return val != p.val; }

  Matrix<T> pow(long long n) {
    Matrix<T> A=*this;
    Matrix<T> R(A.size(), A.size());
    for (int i = 0; i < A.size(); ++i) R[i][i] = 1;
    while (n > 0) {
      if (n & 1) R = R * A;
      A = A * A;
      n >>= 1;
    }
  return R;
  }

};

int m,k;
int G[55][55];

void solve(){
  cin >> m >> k;
  Matrix<modint> mat(m,m,0);
  rep(i,m){
    rep(j,m){
      mat[i][(i+j)%m]+=1;
      mat[i][(i*j)%m]+=1;
    }
  }
  Matrix<modint> vec(m,1,0);vec[0][0]=1;
  cout << (mat.pow(k)*vec)[0][0] << endl;
}

int main(){
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout << fixed << setprecision(50);
    solve();
}
0