結果
問題 | No.980 Fibonacci Convolution Hard |
ユーザー | 🍮かんプリン |
提出日時 | 2020-08-28 17:39:23 |
言語 | C++11 (gcc 11.4.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 8,654 bytes |
コンパイル時間 | 3,439 ms |
コンパイル使用メモリ | 175,644 KB |
実行使用メモリ | 257,840 KB |
最終ジャッジ日時 | 2024-11-13 23:30:06 |
合計ジャッジ時間 | 50,534 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | TLE | - |
testcase_01 | TLE | - |
testcase_02 | TLE | - |
testcase_03 | TLE | - |
testcase_04 | TLE | - |
testcase_05 | TLE | - |
testcase_06 | TLE | - |
testcase_07 | TLE | - |
testcase_08 | TLE | - |
testcase_09 | TLE | - |
testcase_10 | TLE | - |
testcase_11 | TLE | - |
testcase_12 | TLE | - |
testcase_13 | TLE | - |
testcase_14 | TLE | - |
testcase_15 | TLE | - |
testcase_16 | TLE | - |
コンパイルメッセージ
main.cpp: In function ‘int main()’: main.cpp:249:20: warning: format ‘%d’ expects argument of type ‘int’, but argument 2 has type ‘long long int’ [-Wformat=] 249 | printf("\t%d\n",a[x-2]); | ~^ ~~~~~~ | | | | int long long int | %lld main.cpp:248:20: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 248 | int x;scanf("%d",&x); | ~~~~~^~~~~~~~~
ソースコード
/** * @FileName a.cpp * @Author kanpurin * @Created 2020.08.28 17:39:17 **/ #include "bits/stdc++.h" using namespace std; typedef long long ll; template < const int MOD , const int root = 3 , bool any = false> struct FormalPowerSeries { private: using P = FormalPowerSeries< MOD, root, any >; vector< long long > v; long long powMod(long long k, long long n, long long mod) const { ll x = 1; while (n > 0) { if (n & 1) { x = x * k % mod; } k = k * k % mod; n >>= 1; } return x; } void ntt(const bool rev = false) { unsigned int i, j, k, l, p, q, r, s; const unsigned int sz = this->v.size(); if(sz == 1) return; vector<long long> a(sz); r = rev ? (MOD - 1 - (MOD - 1) / sz) : (MOD - 1) / sz; s = powMod(root, r, MOD); vector<unsigned int> kp(sz / 2 + 1, 1); for(i = 0; i < sz / 2; ++i) kp[i + 1] = (unsigned long long)kp[i] * s % MOD; for(i = 1, l = sz / 2; i < sz; i <<= 1, l >>= 1){ for(j = 0, r = 0; j < l; ++j, r += i){ for(k = 0, s = kp[i * j]; k < i; ++k){ p = this->v[k + r], q = this->v[k + r + sz / 2]; a[k + 2 * r] = (p + q) % MOD; a[k + 2 * r + i] = (unsigned long long)((p - q + MOD) % MOD) * s % MOD; } } swap(this->v, a); } if(rev){ s = powMod(sz,MOD-2,MOD); for(i = 0; i < sz; i++){ this->v[i] = (unsigned long long)this->v[i] * s % MOD; } } } inline P pre(int sz) const { return P(vector<long long>(this->v.begin(), this->v.begin() + min((int) this->v.size(), sz))); } public: FormalPowerSeries(int sz = 0) { this->v.resize(sz, 0); } FormalPowerSeries(const vector<long long> &v) { this->v.resize(v.size()); for (int i = 0; i < v.size(); i++) { this->v[i] = v[i]; } } inline size_t size() const { return this->v.size(); } inline void resize(int x, long long val = 0) { assert(x >= 0); this->v.resize(x,val); } inline void set(int x, long long val) { assert(0 <= x && x < (int)v.size()); this->v[x] = (val % MOD + MOD) % MOD; } P operator+(const P &a) const { return P(*this) += a; } P operator+(const long long a) const { return P(*this) += a; } P operator-(const P &a) const { return P(*this) -= a; } P operator*(const P &a) const { return P(*this) *= a; } P operator*(const long long a) const { return P(*this) *= a; } P operator/(const P &a) const { return P(*this) /= a; } P &operator+=(const P &a) { if (a.size() > this->v.size()) this->v.resize(a.size(), 0); for (int i = 0; i < a.size(); i++) this->v[i] += a[i], this->v[i] %= MOD; return *this; } P &operator+=(const long long a) { if (this->v.size() == 0) this->v.resize(1,(a % MOD + MOD) % MOD); else this->v[0] += a, this->v[0] %= MOD; return *this; } P &operator-=(const P &a) { if (a.size() > this->v.size()) this->v.resize(a.size(), 0); for (int i = 0; i < a.size(); i++) this->v[i] = this->v[i] - a[i] + MOD, this->v[i] %= MOD; while (this->size() && this->v.back() == 0) this->v.pop_back(); return *this; } P &operator*=(const long long a) { for (int i = 0; i < this->v.size(); i++) this->v[i] *= a, this->v[i] %= MOD; return *this; } P &operator*=(const P &a) { if (this->v.empty() || (int)a.size() == 0) { this->v.clear(); return *this; } if (any) { int n = this->v.size(), m = a.size(); static constexpr int mod0 = 998244353, mod1 = 1300234241, mod2 = 1484783617; using T0 = FormalPowerSeries<mod0,3>; using T1 = FormalPowerSeries<mod1,3>; using T2 = FormalPowerSeries<mod2,5>; T0 l0(n), r0(m); T1 l1(n), r1(m); T2 l2(n), r2(m); for (int i = 0; i < n; ++i) l0.set(i,this->v[i]), l1.set(i,this->v[i]), l2.set(i,this->v[i]); for (int j = 0; j < m; ++j) r0.set(j,a[j]), r1.set(j,a[j]), r2.set(j,a[j]); l0 = l0 * r0, l1 = l1 * r1, l2 = l2 * r2; this->v.resize(n + m - 1); static const long long im0 = powMod(mod0, mod1-2, mod1); static const long long im1 = powMod(mod1, mod2-2, mod2), im0m1 = im1 * powMod(mod0, mod2-2, mod2) % mod2; static const long long m0 = mod0 % MOD, m0m1 = m0 * mod1 % MOD; for (int i = 0; i < n + m - 1; ++i) { int y0 = l0[i]; int y1 = (im0 * (l1[i] - y0 + mod1)) % mod1; int y2 = (im0m1 * (l2[i] - y0 + mod2) % mod2 - im1 * y1 % mod2 + mod2) % mod2; this->v[i] = (y0 + m0 * y1 % MOD + m0m1 * y2 % MOD) % MOD; } return *this; } else { const int sz = (int)this->v.size() + (int)a.size() - 1; int t = 1; while(t < sz){ t <<= 1; } P A(t); this->v.resize(t,0); for(int i = 0; i < (int)a.size(); i++){ A.set(i,a[i]); } this->ntt(), A.ntt(); for (int i = 0; i < t; i++){ this->v[i] = (unsigned long long)this->v[i] * A[i] % MOD; } this->ntt(true); this->v.resize(sz); return *this; } } P &operator/=(const P &a) { *this *= a.inverse(); return *this; } P inverse(int deg = -1) const { assert(this->v.size() != 0 && this->v[0] != 0); const int n = (int)this->v.size(); if(deg == -1) deg = n; P ret(1); ret.set(0,powMod(this->v[0],MOD-2,MOD)); for(int i = 1; i < deg; i <<= 1) { ret = (ret + ret - ret * ret * pre(i << 1)).pre(i << 1); } return ret.pre(deg); } P differential() const { const int n = (int) this->v.size(); P ret(max(0, n - 1)); for(int i = 1; i < n; i++) ret.set(i-1,this->v[i] * i); return ret; } P integral() const { const int n = (int) this->v.size(); P ret(n + 1); for(int i = 0; i < n; i++) ret.set(i + 1,this->v[i] * powMod(i + 1,MOD-2,MOD)); return ret; } P log(int deg = -1) const { assert(this->v.size() != 0 && this->v[0] == 1); const int n = (int)this->v.size(); if(deg == -1) deg = n; return (this->differential() * this->inverse(deg)).pre(deg - 1).integral(); } P exp(int deg = -1) const { if (this->v.size() == 0) return P(0); assert(this->v[0] == 0); const int n = (int) this->v.size(); if(deg == -1) deg = n; P ret(1); ret.set(0,1); for(int i = 1; i < deg; i <<= 1) { ret = (ret * (pre(i << 1) + 1 - ret.log(i << 1))).pre(i << 1); } return ret.pre(deg); } P pow(long long k, int deg = -1) const { const int n = (int) this->v.size(); if(deg == -1) deg = n; for(int i = 0; i < n; i++) { if(this->v[i] != 0) { long long rev = powMod(this->v[i],MOD-2,MOD); P C = *this * rev; P D(n - i); for(int j = i; j < n; j++) D.set(j - i,C[j]); D = (D.log() * k).exp() * powMod(this->v[i],k,MOD); P E(deg); if(i * k > deg) return E; auto S = i * k; for(int j = 0; j + S < deg && j < D.size(); j++) E.set(j + S,D[j]); return E; } } return *this; } inline long long operator[](int x) const { assert(0 <= x && x < (int)this->v.size()); return v[x]; } friend std::ostream &operator<<(std::ostream &os, const P &p) { os << "[ "; for (int i = 0; i < (int)p.size(); i++) { os << p[i] << " "; } os << "]"; return os; } }; int main() { int p,q;cin >> p >> q; const int max_query = 2 * 1000000; const long long MOD = 1e9 + 7; FormalPowerSeries<MOD,3,true> a(max_query); a.set(0,0); a.set(1,1); long long a1 = 0, a2 = 1; for (int i = 2; i < max_query; i++) { a.set(i,(a2 * p + a1) % MOD); a1 = a2; a2 = a[i]; } a *= a; for (int i = 0; i < q; i++) { int x;scanf("%d",&x); printf("\t%d\n",a[x-2]); } return 0; }