結果
| 問題 |
No.980 Fibonacci Convolution Hard
|
| コンテスト | |
| ユーザー |
🍮かんプリン
|
| 提出日時 | 2020-08-28 17:39:23 |
| 言語 | C++11(廃止可能性あり) (gcc 13.3.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 8,654 bytes |
| コンパイル時間 | 3,439 ms |
| コンパイル使用メモリ | 175,644 KB |
| 実行使用メモリ | 257,840 KB |
| 最終ジャッジ日時 | 2024-11-13 23:30:06 |
| 合計ジャッジ時間 | 50,534 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | TLE * 17 |
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:249:20: warning: format ‘%d’ expects argument of type ‘int’, but argument 2 has type ‘long long int’ [-Wformat=]
249 | printf("\t%d\n",a[x-2]);
| ~^ ~~~~~~
| | |
| int long long int
| %lld
main.cpp:248:20: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
248 | int x;scanf("%d",&x);
| ~~~~~^~~~~~~~~
ソースコード
/**
* @FileName a.cpp
* @Author kanpurin
* @Created 2020.08.28 17:39:17
**/
#include "bits/stdc++.h"
using namespace std;
typedef long long ll;
template < const int MOD , const int root = 3 , bool any = false>
struct FormalPowerSeries {
private:
using P = FormalPowerSeries< MOD, root, any >;
vector< long long > v;
long long powMod(long long k, long long n, long long mod) const {
ll x = 1;
while (n > 0) {
if (n & 1) {
x = x * k % mod;
}
k = k * k % mod;
n >>= 1;
}
return x;
}
void ntt(const bool rev = false) {
unsigned int i, j, k, l, p, q, r, s;
const unsigned int sz = this->v.size();
if(sz == 1) return;
vector<long long> a(sz);
r = rev ? (MOD - 1 - (MOD - 1) / sz) : (MOD - 1) / sz;
s = powMod(root, r, MOD);
vector<unsigned int> kp(sz / 2 + 1, 1);
for(i = 0; i < sz / 2; ++i) kp[i + 1] = (unsigned long long)kp[i] * s % MOD;
for(i = 1, l = sz / 2; i < sz; i <<= 1, l >>= 1){
for(j = 0, r = 0; j < l; ++j, r += i){
for(k = 0, s = kp[i * j]; k < i; ++k){
p = this->v[k + r], q = this->v[k + r + sz / 2];
a[k + 2 * r] = (p + q) % MOD;
a[k + 2 * r + i] = (unsigned long long)((p - q + MOD) % MOD) * s % MOD;
}
}
swap(this->v, a);
}
if(rev){
s = powMod(sz,MOD-2,MOD);
for(i = 0; i < sz; i++){ this->v[i] = (unsigned long long)this->v[i] * s % MOD; }
}
}
inline P pre(int sz) const {
return P(vector<long long>(this->v.begin(), this->v.begin() + min((int) this->v.size(), sz)));
}
public:
FormalPowerSeries(int sz = 0) {
this->v.resize(sz, 0);
}
FormalPowerSeries(const vector<long long> &v) {
this->v.resize(v.size());
for (int i = 0; i < v.size(); i++) {
this->v[i] = v[i];
}
}
inline size_t size() const { return this->v.size(); }
inline void resize(int x, long long val = 0) {
assert(x >= 0);
this->v.resize(x,val);
}
inline void set(int x, long long val) {
assert(0 <= x && x < (int)v.size());
this->v[x] = (val % MOD + MOD) % MOD;
}
P operator+(const P &a) const { return P(*this) += a; }
P operator+(const long long a) const { return P(*this) += a; }
P operator-(const P &a) const { return P(*this) -= a; }
P operator*(const P &a) const { return P(*this) *= a; }
P operator*(const long long a) const { return P(*this) *= a; }
P operator/(const P &a) const { return P(*this) /= a; }
P &operator+=(const P &a) {
if (a.size() > this->v.size()) this->v.resize(a.size(), 0);
for (int i = 0; i < a.size(); i++) this->v[i] += a[i], this->v[i] %= MOD;
return *this;
}
P &operator+=(const long long a) {
if (this->v.size() == 0) this->v.resize(1,(a % MOD + MOD) % MOD);
else this->v[0] += a, this->v[0] %= MOD;
return *this;
}
P &operator-=(const P &a) {
if (a.size() > this->v.size()) this->v.resize(a.size(), 0);
for (int i = 0; i < a.size(); i++) this->v[i] = this->v[i] - a[i] + MOD, this->v[i] %= MOD;
while (this->size() && this->v.back() == 0) this->v.pop_back();
return *this;
}
P &operator*=(const long long a) {
for (int i = 0; i < this->v.size(); i++) this->v[i] *= a, this->v[i] %= MOD;
return *this;
}
P &operator*=(const P &a) {
if (this->v.empty() || (int)a.size() == 0) {
this->v.clear();
return *this;
}
if (any) {
int n = this->v.size(), m = a.size();
static constexpr int mod0 = 998244353, mod1 = 1300234241, mod2 = 1484783617;
using T0 = FormalPowerSeries<mod0,3>;
using T1 = FormalPowerSeries<mod1,3>;
using T2 = FormalPowerSeries<mod2,5>;
T0 l0(n), r0(m);
T1 l1(n), r1(m);
T2 l2(n), r2(m);
for (int i = 0; i < n; ++i) l0.set(i,this->v[i]), l1.set(i,this->v[i]), l2.set(i,this->v[i]);
for (int j = 0; j < m; ++j) r0.set(j,a[j]), r1.set(j,a[j]), r2.set(j,a[j]);
l0 = l0 * r0, l1 = l1 * r1, l2 = l2 * r2;
this->v.resize(n + m - 1);
static const long long im0 = powMod(mod0, mod1-2, mod1);
static const long long im1 = powMod(mod1, mod2-2, mod2), im0m1 = im1 * powMod(mod0, mod2-2, mod2) % mod2;
static const long long m0 = mod0 % MOD, m0m1 = m0 * mod1 % MOD;
for (int i = 0; i < n + m - 1; ++i) {
int y0 = l0[i];
int y1 = (im0 * (l1[i] - y0 + mod1)) % mod1;
int y2 = (im0m1 * (l2[i] - y0 + mod2) % mod2 - im1 * y1 % mod2 + mod2) % mod2;
this->v[i] = (y0 + m0 * y1 % MOD + m0m1 * y2 % MOD) % MOD;
}
return *this;
}
else {
const int sz = (int)this->v.size() + (int)a.size() - 1;
int t = 1;
while(t < sz){ t <<= 1; }
P A(t); this->v.resize(t,0);
for(int i = 0; i < (int)a.size(); i++){ A.set(i,a[i]); }
this->ntt(), A.ntt();
for (int i = 0; i < t; i++){ this->v[i] = (unsigned long long)this->v[i] * A[i] % MOD; }
this->ntt(true);
this->v.resize(sz);
return *this;
}
}
P &operator/=(const P &a) {
*this *= a.inverse();
return *this;
}
P inverse(int deg = -1) const {
assert(this->v.size() != 0 && this->v[0] != 0);
const int n = (int)this->v.size();
if(deg == -1) deg = n;
P ret(1);
ret.set(0,powMod(this->v[0],MOD-2,MOD));
for(int i = 1; i < deg; i <<= 1) {
ret = (ret + ret - ret * ret * pre(i << 1)).pre(i << 1);
}
return ret.pre(deg);
}
P differential() const {
const int n = (int) this->v.size();
P ret(max(0, n - 1));
for(int i = 1; i < n; i++) ret.set(i-1,this->v[i] * i);
return ret;
}
P integral() const {
const int n = (int) this->v.size();
P ret(n + 1);
for(int i = 0; i < n; i++) ret.set(i + 1,this->v[i] * powMod(i + 1,MOD-2,MOD));
return ret;
}
P log(int deg = -1) const {
assert(this->v.size() != 0 && this->v[0] == 1);
const int n = (int)this->v.size();
if(deg == -1) deg = n;
return (this->differential() * this->inverse(deg)).pre(deg - 1).integral();
}
P exp(int deg = -1) const {
if (this->v.size() == 0) return P(0);
assert(this->v[0] == 0);
const int n = (int) this->v.size();
if(deg == -1) deg = n;
P ret(1);
ret.set(0,1);
for(int i = 1; i < deg; i <<= 1) {
ret = (ret * (pre(i << 1) + 1 - ret.log(i << 1))).pre(i << 1);
}
return ret.pre(deg);
}
P pow(long long k, int deg = -1) const {
const int n = (int) this->v.size();
if(deg == -1) deg = n;
for(int i = 0; i < n; i++) {
if(this->v[i] != 0) {
long long rev = powMod(this->v[i],MOD-2,MOD);
P C = *this * rev;
P D(n - i);
for(int j = i; j < n; j++) D.set(j - i,C[j]);
D = (D.log() * k).exp() * powMod(this->v[i],k,MOD);
P E(deg);
if(i * k > deg) return E;
auto S = i * k;
for(int j = 0; j + S < deg && j < D.size(); j++) E.set(j + S,D[j]);
return E;
}
}
return *this;
}
inline long long operator[](int x) const {
assert(0 <= x && x < (int)this->v.size());
return v[x];
}
friend std::ostream &operator<<(std::ostream &os, const P &p) {
os << "[ ";
for (int i = 0; i < (int)p.size(); i++) {
os << p[i] << " ";
}
os << "]";
return os;
}
};
int main() {
int p,q;cin >> p >> q;
const int max_query = 2 * 1000000;
const long long MOD = 1e9 + 7;
FormalPowerSeries<MOD,3,true> a(max_query);
a.set(0,0);
a.set(1,1);
long long a1 = 0, a2 = 1;
for (int i = 2; i < max_query; i++) {
a.set(i,(a2 * p + a1) % MOD);
a1 = a2;
a2 = a[i];
}
a *= a;
for (int i = 0; i < q; i++) {
int x;scanf("%d",&x);
printf("\t%d\n",a[x-2]);
}
return 0;
}
🍮かんプリン