結果

問題 No.1200 お菓子配り-3
ユーザー Kiri8128Kiri8128
提出日時 2020-08-28 22:18:09
言語 PyPy3
(7.3.15)
結果
WA  
実行時間 -
コード長 2,672 bytes
コンパイル時間 381 ms
コンパイル使用メモリ 82,264 KB
実行使用メモリ 80,676 KB
最終ジャッジ日時 2024-11-14 15:32:53
合計ジャッジ時間 7,591 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 37 ms
53,072 KB
testcase_01 AC 39 ms
53,288 KB
testcase_02 WA -
testcase_03 AC 39 ms
54,796 KB
testcase_04 WA -
testcase_05 AC 39 ms
54,192 KB
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
testcase_22 WA -
testcase_23 WA -
testcase_24 WA -
testcase_25 WA -
testcase_26 WA -
testcase_27 AC 38 ms
52,616 KB
testcase_28 AC 503 ms
78,940 KB
testcase_29 AC 335 ms
79,460 KB
testcase_30 AC 347 ms
79,976 KB
testcase_31 WA -
testcase_32 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys
input = lambda: sys.stdin.readline().rstrip()
def gcd(a, b):
    while b: a, b = b, a % b
    return a
def isPrimeMR(n):
    d = n - 1
    d = d // (d & -d)
    L = [2, 7, 61] if n < 1<<32 else [2, 3, 5, 7, 11, 13, 17] if n < 1<<48 else [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]
    for a in L:
        t = d
        y = pow(a, t, n)
        if y == 1: continue
        while y != n - 1:
            y = y * y % n
            if y == 1 or t == n - 1: return 0
            t <<= 1
    return 1
def findFactorRho(n):
    m = 1 << n.bit_length() // 8
    for c in range(1, 99):
        f = lambda x: (x * x + c) % n
        y, r, q, g = 2, 1, 1, 1
        while g == 1:
            x = y
            for i in range(r):
                y = f(y)
            k = 0
            while k < r and g == 1:
                ys = y
                for i in range(min(m, r - k)):
                    y = f(y)
                    q = q * abs(x - y) % n
                g = gcd(q, n)
                k += m
            r <<= 1
        if g == n:
            g = 1
            while g == 1:
                ys = f(ys)
                g = gcd(abs(x - ys), n)
        if g < n:
            if isPrimeMR(g): return g
            elif isPrimeMR(n // g): return n // g
            return findFactorRho(g)
def primeFactor(n):
    i = 2
    ret = {}
    rhoFlg = 0
    while i * i <= n:
        k = 0
        while n % i == 0:
            n //= i
            k += 1
        if k: ret[i] = k
        i += i % 2 + (3 if i % 3 == 1 else 1)
        if i == 101 and n >= 2 ** 20:
            while n > 1:
                if isPrimeMR(n):
                    ret[n], n = 1, 1
                else:
                    rhoFlg = 1
                    j = findFactorRho(n)
                    k = 0
                    while n % j == 0:
                        n //= j
                        k += 1
                    ret[j] = k

    if n > 1: ret[n] = 1
    if rhoFlg: ret = {x: ret[x] for x in sorted(ret)}
    return ret

def divisors(N):
    pf = primeFactor(N)
    ret = [1]
    for p in pf:
        ret_prev = ret
        ret = set()
        for i in range(pf[p]+1):
            for r in ret_prev:
                ret.add(r * (p ** i))
    return ret

S = int(input())
for _ in range(S):
    X, Y = map(int, input().split())
    d1 = {a+1 for a in divisors(X - Y)}
    d2 = {a-1 for a in divisors(X + Y)}
    d = d1 & d2
    
    ans = 0
    for a in d:
        bmc = (X - Y) // (a - 1)
        bpc = (X + Y) // (a + 1)
        if (bmc ^ bpc) & 1: continue
        
        b = bmc + bpc >> 1
        c = bpc - bmc >> 1
        if b > 0 and c > 0:
            ans += 1
    print(ans)
0