結果
問題 | No.1201 お菓子配り-4 |
ユーザー | Haar |
提出日時 | 2020-08-28 22:24:56 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 5,275 bytes |
コンパイル時間 | 2,178 ms |
コンパイル使用メモリ | 204,716 KB |
実行使用メモリ | 13,640 KB |
最終ジャッジ日時 | 2024-11-14 01:16:54 |
合計ジャッジ時間 | 33,886 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 89 ms
13,640 KB |
testcase_01 | AC | 1,193 ms
6,820 KB |
testcase_02 | AC | 1,716 ms
6,816 KB |
testcase_03 | AC | 836 ms
6,816 KB |
testcase_04 | AC | 407 ms
6,820 KB |
testcase_05 | AC | 1,013 ms
6,820 KB |
testcase_06 | AC | 155 ms
6,820 KB |
testcase_07 | AC | 458 ms
6,816 KB |
testcase_08 | AC | 1,277 ms
6,820 KB |
testcase_09 | AC | 940 ms
6,820 KB |
testcase_10 | AC | 9 ms
6,820 KB |
testcase_11 | AC | 244 ms
6,816 KB |
testcase_12 | AC | 1,958 ms
6,816 KB |
testcase_13 | AC | 54 ms
6,816 KB |
testcase_14 | AC | 28 ms
6,816 KB |
testcase_15 | AC | 1,538 ms
6,816 KB |
testcase_16 | AC | 468 ms
6,820 KB |
testcase_17 | AC | 604 ms
6,816 KB |
testcase_18 | AC | 98 ms
6,820 KB |
testcase_19 | AC | 93 ms
6,816 KB |
testcase_20 | AC | 2 ms
6,820 KB |
testcase_21 | AC | 2 ms
6,820 KB |
testcase_22 | AC | 2 ms
6,816 KB |
testcase_23 | AC | 2 ms
6,816 KB |
testcase_24 | AC | 2 ms
6,820 KB |
testcase_25 | AC | 2 ms
6,816 KB |
testcase_26 | AC | 2 ms
6,820 KB |
testcase_27 | AC | 2 ms
6,816 KB |
testcase_28 | AC | 2 ms
6,816 KB |
testcase_29 | AC | 2 ms
6,820 KB |
testcase_30 | AC | 2,470 ms
6,820 KB |
testcase_31 | AC | 2,473 ms
6,816 KB |
testcase_32 | AC | 2,478 ms
6,816 KB |
testcase_33 | AC | 2,481 ms
6,816 KB |
testcase_34 | AC | 2,481 ms
6,816 KB |
testcase_35 | TLE | - |
ソースコード
#include <bits/stdc++.h> #ifdef DEBUG #include <Mylib/Debug/debug.cpp> #else #define dump(...) ((void)0) #endif template <typename T, typename U> bool chmin(T &a, const U &b){ return (a > b ? a = b, true : false); } template <typename T, typename U> bool chmax(T &a, const U &b){ return (a < b ? a = b, true : false); } template <typename T, size_t N, typename U> void fill_array(T (&a)[N], const U &v){ std::fill((U*)a, (U*)(a + N), v); } template <typename T> auto make_vector(int n, int m, const T &value){ return std::vector<std::vector<T>>(n, std::vector<T>(m, value)); } template <typename T> std::ostream& operator<<(std::ostream &s, const std::vector<T> &a){ for(auto it = a.begin(); it != a.end(); ++it){ if(it != a.begin()) s << " "; s << *it; } return s; } template <typename T> std::istream& operator>>(std::istream &s, std::vector<T> &a){ for(auto &x : a) s >> x; return s; } /** * @title Montgomery multiplication * @docs montgomery.md */ template <int64_t M_> struct Montgomery{ constexpr static int64_t MOD = M_; constexpr static int b = 64 - __builtin_clzll(MOD); constexpr static int64_t R = 1LL << b; constexpr static int64_t R2 = (R % MOD) * (R % MOD) % MOD; constexpr static int64_t mask = R - 1; constexpr static int64_t init(){ int64_t ret = 0, r = R, i = 1, t = 0; while(r > 1){ if(t % 2 == 0) t += MOD, ret += i; t >>= 1, r >>= 1, i <<= 1; } return ret; } constexpr static int64_t m = init(); static_assert(R > MOD, "R > MOD"); static_assert((R & (R - 1)) == 0, "R must be power of 2"); static int64_t reduce(int64_t T){ int64_t ret = ((((T & mask) * m) & mask) * MOD + T) >> b; if(ret >= MOD) ret -= MOD; return ret; } int64_t val; Montgomery(): val(0){} Montgomery(int64_t a){ if(a < 0){ if(a < -MOD) a = a % MOD + MOD; else a += MOD; }else if(a >= MOD){ if(a < 2 * MOD) a -= MOD; else a %= MOD; } val = reduce(a * R2); } Montgomery(const Montgomery &that): val(that.val){} auto& operator+=(const Montgomery &that){ val += that.val; if(val >= MOD) val -= MOD; return *this; } auto& operator-=(const Montgomery &that){ val -= that.val; if(val < 0) val += MOD; return *this; } auto& operator*=(const Montgomery &that){ val = reduce(val * that.val); return *this; } auto& operator/=(const Montgomery &that){ *this *= that.inv(); return *this; } auto operator-() const { Montgomery ret(0); ret -= *this; return ret; } auto operator+(const Montgomery &that) const {auto ret = *this; return ret += that;} auto operator-(const Montgomery &that) const {auto ret = *this; return ret -= that;} auto operator*(const Montgomery &that) const {auto ret = *this; return ret *= that;} auto operator/(const Montgomery &that) const {auto ret = *this; return ret /= that;} auto power(int64_t p) const { Montgomery ret = 1, e = *this; while(p > 0){ if(p & 1) ret *= e; e *= e; p >>= 1; } return ret; } static auto power(int64_t n, int64_t p){return Montgomery(n).power(p);} auto inv() const {return power(MOD - 2);} static auto inv(int64_t n){return Montgomery(n).inv();} friend auto operator+(int64_t a, const Montgomery &b) {return Montgomery(a) + b;} friend auto operator-(int64_t a, const Montgomery &b) {return Montgomery(a) - b;} friend auto operator*(int64_t a, const Montgomery &b) {return Montgomery(a) * b;} friend auto operator/(int64_t a, const Montgomery &b) {return Montgomery(a) / b;} bool operator==(const Montgomery &that) const { return (val >= MOD ? val - MOD : val) == (that.val >= MOD ? that.val - MOD : that.val); } bool operator!=(const Montgomery &that) const {return !(*this == that);} friend std::ostream& operator<<(std::ostream& s, const Montgomery &a){ return s << reduce(a.val); } friend std::istream& operator>>(std::istream& s, Montgomery &a){ int64_t t; s >> t; a = Montgomery(t); return s; } explicit operator int32_t() const {return reduce(val);} explicit operator int64_t() const {return reduce(val);} }; namespace solver{ void init(){ std::cin.tie(0); std::ios::sync_with_stdio(false); std::cout << std::fixed << std::setprecision(12); std::cerr << std::fixed << std::setprecision(12); std::cin.exceptions(std::ios_base::failbit); } //using mint = ModInt<1000000007>; using mint = Montgomery<1000000007>; int64_t f(int64_t a, int64_t m, int64_t n){ int64_t ret = 0; if(a >= m) ret += (n - 1) * n * (a / m) / 2, a %= m; auto y_max = (a * n) / m; auto x_max = y_max * m; if(y_max == 0) return ret; ret += (n - (x_max + a - 1) / a) * y_max; ret += f(m, a, y_max); return ret; } void solve(){ int64_t N, M; std::cin >> N >> M; std::vector<int64_t> A(N), B(M); std::cin >> A >> B; mint ans = 0; for(auto a : A){ for(auto b : B){ ans += f(a, b, b + 1) * 2; } } std::cout << ans << "\n"; } } int main(){ solver::init(); while(true){ try{ solver::solve(); }catch(const std::istream::failure &e){ break; } } return 0; }