結果
| 問題 |
No.1200 お菓子配り-3
|
| コンテスト | |
| ユーザー |
neterukun
|
| 提出日時 | 2020-08-28 22:39:59 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 3,030 bytes |
| コンパイル時間 | 416 ms |
| コンパイル使用メモリ | 82,428 KB |
| 実行使用メモリ | 80,208 KB |
| 最終ジャッジ日時 | 2024-11-14 16:08:24 |
| 合計ジャッジ時間 | 6,461 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 29 WA * 2 |
ソースコード
import sys
input = sys.stdin.buffer.readline
def gcd(a, b):
while b: a, b = b, a % b
return a
def isPrimeMR(n):
d = n - 1
d = d // (d & -d)
L = [2]
for a in L:
t = d
y = pow(a, t, n)
if y == 1: continue
while y != n - 1:
y = (y * y) % n
if y == 1 or t == n - 1: return 0
t <<= 1
return 1
def findFactorRho(n):
m = 1 << n.bit_length() // 8
for c in range(1, 99):
f = lambda x: (x * x + c) % n
y, r, q, g = 2, 1, 1, 1
while g == 1:
x = y
for i in range(r):
y = f(y)
k = 0
while k < r and g == 1:
ys = y
for i in range(min(m, r - k)):
y = f(y)
q = q * abs(x - y) % n
g = gcd(q, n)
k += m
r <<= 1
if g == n:
g = 1
while g == 1:
ys = f(ys)
g = gcd(abs(x - ys), n)
if g < n:
if isPrimeMR(g): return g
elif isPrimeMR(n // g): return n // g
return findFactorRho(g)
def primeFactor(n):
i = 2
ret = {}
rhoFlg = 0
while i*i <= n:
k = 0
while n % i == 0:
n //= i
k += 1
if k: ret[i] = k
i += 1 + i % 2
if i == 101 and n >= 2 ** 20:
while n > 1:
if isPrimeMR(n):
ret[n], n = 1, 1
else:
rhoFlg = 1
j = findFactorRho(n)
k = 0
while n % j == 0:
n //= j
k += 1
ret[j] = k
if n > 1: ret[n] = 1
if rhoFlg: ret = {x: ret[x] for x in sorted(ret)}
return ret
def make_divisors(n):
def solve(li, ind, val):
if ind == len(li):
res.append(val)
return
for v in li[ind]:
solve(li, ind + 1, val * v)
factors = primeFactor(n)
li = []
for v in factors:
tmp = [1]
val = v
for _ in range(factors[val]):
tmp.append(val)
val *= v
li.append(tmp)
res = []
solve(li, 0, 1)
return res
s = int(input())
memo = {}
for _ in range(s):
x, y = map(int, input().split())
if x < y:
x, y = y, x
sum_ = x + y
diff = x - y
cnt = 0
if diff == 0:
cnt += x - 1
# b * (a + 1) = x
cnt += (len(make_divisors(x)) - 1)
print(cnt)
continue
for div in make_divisors(diff):
a = div + 1
# b + c = sum_ // (a + 1)
# b - c = diff // (a - 1)
if sum_ % (a + 1) != 0:
continue
t1, t2 = sum_ // (a + 1), diff // (a - 1)
if (t1 + t2) % 2 == 1:
continue
b, c = (t1 + t2) // 2, (t1 - t2) // 2
if b > 0 and c > 0:
cnt += 1
print(cnt)
neterukun