結果
問題 | No.1204 お菓子配り-FINAL |
ユーザー | 👑 hos.lyric |
提出日時 | 2020-08-28 23:18:55 |
言語 | D (dmd 2.106.1) |
結果 |
WA
|
実行時間 | - |
コード長 | 12,744 bytes |
コンパイル時間 | 1,839 ms |
コンパイル使用メモリ | 166,696 KB |
実行使用メモリ | 13,688 KB |
最終ジャッジ日時 | 2024-06-22 08:29:28 |
合計ジャッジ時間 | 5,885 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | WA | - |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | WA | - |
testcase_28 | WA | - |
testcase_29 | WA | - |
testcase_30 | WA | - |
testcase_31 | WA | - |
testcase_32 | WA | - |
testcase_33 | WA | - |
testcase_34 | WA | - |
testcase_35 | WA | - |
testcase_36 | WA | - |
testcase_37 | WA | - |
testcase_38 | WA | - |
testcase_39 | WA | - |
testcase_40 | AC | 39 ms
12,212 KB |
testcase_41 | AC | 16 ms
11,272 KB |
testcase_42 | AC | 14 ms
11,272 KB |
testcase_43 | AC | 16 ms
11,664 KB |
testcase_44 | AC | 14 ms
11,072 KB |
testcase_45 | AC | 16 ms
11,268 KB |
testcase_46 | AC | 15 ms
12,288 KB |
testcase_47 | AC | 17 ms
11,696 KB |
testcase_48 | AC | 37 ms
11,592 KB |
testcase_49 | AC | 28 ms
12,264 KB |
testcase_50 | AC | 33 ms
11,212 KB |
testcase_51 | AC | 20 ms
11,348 KB |
testcase_52 | AC | 19 ms
12,920 KB |
testcase_53 | AC | 27 ms
11,624 KB |
testcase_54 | AC | 40 ms
11,084 KB |
testcase_55 | AC | 16 ms
11,592 KB |
testcase_56 | AC | 31 ms
11,244 KB |
testcase_57 | AC | 14 ms
11,152 KB |
testcase_58 | AC | 21 ms
12,072 KB |
testcase_59 | AC | 27 ms
11,152 KB |
testcase_60 | AC | 13 ms
11,300 KB |
testcase_61 | AC | 14 ms
11,364 KB |
testcase_62 | WA | - |
testcase_63 | WA | - |
testcase_64 | WA | - |
testcase_65 | WA | - |
testcase_66 | WA | - |
testcase_67 | AC | 14 ms
12,212 KB |
testcase_68 | AC | 14 ms
11,984 KB |
testcase_69 | WA | - |
testcase_70 | WA | - |
testcase_71 | WA | - |
testcase_72 | WA | - |
testcase_73 | WA | - |
testcase_74 | WA | - |
testcase_75 | WA | - |
testcase_76 | AC | 14 ms
11,456 KB |
testcase_77 | WA | - |
testcase_78 | WA | - |
testcase_79 | WA | - |
testcase_80 | WA | - |
testcase_81 | AC | 14 ms
11,392 KB |
testcase_82 | WA | - |
testcase_83 | WA | - |
testcase_84 | WA | - |
testcase_85 | WA | - |
testcase_86 | WA | - |
testcase_87 | WA | - |
testcase_88 | WA | - |
testcase_89 | WA | - |
testcase_90 | WA | - |
testcase_91 | WA | - |
testcase_92 | WA | - |
testcase_93 | WA | - |
testcase_94 | WA | - |
testcase_95 | WA | - |
testcase_96 | WA | - |
testcase_97 | WA | - |
testcase_98 | WA | - |
testcase_99 | WA | - |
testcase_100 | WA | - |
testcase_101 | WA | - |
testcase_102 | WA | - |
testcase_103 | WA | - |
testcase_104 | WA | - |
testcase_105 | WA | - |
testcase_106 | WA | - |
testcase_107 | WA | - |
testcase_108 | WA | - |
testcase_109 | WA | - |
testcase_110 | WA | - |
testcase_111 | WA | - |
testcase_112 | WA | - |
testcase_113 | WA | - |
testcase_114 | WA | - |
testcase_115 | WA | - |
testcase_116 | WA | - |
testcase_117 | WA | - |
testcase_118 | WA | - |
testcase_119 | WA | - |
testcase_120 | WA | - |
testcase_121 | WA | - |
testcase_122 | WA | - |
testcase_123 | WA | - |
testcase_124 | WA | - |
testcase_125 | WA | - |
testcase_126 | WA | - |
testcase_127 | WA | - |
testcase_128 | WA | - |
testcase_129 | WA | - |
ソースコード
import std.conv, std.functional, std.range, std.stdio, std.string; import std.algorithm, std.array, std.bigint, std.bitmanip, std.complex, std.container, std.math, std.mathspecial, std.numeric, std.regex, std.typecons; import core.bitop; class EOFException : Throwable { this() { super("EOF"); } } string[] tokens; string readToken() { for (; tokens.empty; ) { if (stdin.eof) { throw new EOFException; } tokens = readln.split; } auto token = tokens.front; tokens.popFront; return token; } int readInt() { return readToken.to!int; } long readLong() { return readToken.to!long; } real readReal() { return readToken.to!real; } bool chmin(T)(ref T t, in T f) { if (t > f) { t = f; return true; } else { return false; } } bool chmax(T)(ref T t, in T f) { if (t < f) { t = f; return true; } else { return false; } } int binarySearch(alias pred, T)(in T[] as) { int lo = -1, hi = cast(int)(as.length); for (; lo + 1 < hi; ) { const mid = (lo + hi) >> 1; (unaryFun!pred(as[mid]) ? hi : lo) = mid; } return hi; } int lowerBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a >= val)); } int upperBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a > val)); } struct ModInt(int M_) { import std.conv : to; alias M = M_; int x; this(ModInt a) { x = a.x; } this(long a) { x = cast(int)(a % M); if (x < 0) x += M; } ref ModInt opAssign(long a) { return (this = ModInt(a)); } ref ModInt opOpAssign(string op)(ModInt a) { static if (op == "+") { x += a.x; if (x >= M) x -= M; } else static if (op == "-") { x -= a.x; if (x < 0) x += M; } else static if (op == "*") { x = cast(int)((cast(long)(x) * a.x) % M); } else static if (op == "/") { this *= a.inv(); } else static assert(false); return this; } ref ModInt opOpAssign(string op)(long a) { static if (op == "^^") { if (a < 0) return (this = inv()^^(-a)); ModInt t2 = this, te = ModInt(1); for (long e = a; e > 0; e >>= 1) { if (e & 1) te *= t2; t2 *= t2; } x = cast(int)(te.x); return this; } else return mixin("this " ~ op ~ "= ModInt(a)"); } ModInt inv() const { int a = x, b = M, y = 1, z = 0, t; for (; ; ) { t = a / b; a -= t * b; if (a == 0) { assert(b == 1 || b == -1); return ModInt(b * z); } y -= t * z; t = b / a; b -= t * a; if (b == 0) { assert(a == 1 || a == -1); return ModInt(a * y); } z -= t * y; } } ModInt opUnary(string op: "-")() const { return ModInt(-x); } ModInt opBinary(string op, T)(T a) const { return mixin("ModInt(this) " ~ op ~ "= a"); } ModInt opBinaryRight(string op)(long a) const { return mixin("ModInt(a) " ~ op ~ "= this"); } bool opCast(T: bool)() const { return (x != 0); } string toString() const { return x.to!string; } } enum MO = 1000000007; alias Mint = ModInt!MO; // a^-1 (mod m) long modInv(long a, long m) in { assert(m > 0, "modInv: m > 0 must hold"); } do { long b = m, x = 1, y = 0, t; for (; ; ) { t = a / b; a -= t * b; if (a == 0) { assert(b == 1 || b == -1, "modInv: gcd(a, m) != 1"); if (b == -1) y = -y; return (y < 0) ? (y + m) : y; } x -= t * y; t = b / a; b -= t * a; if (b == 0) { assert(a == 1 || a == -1, "modInv: gcd(a, m) != 1"); if (a == -1) x = -x; return (x < 0) ? (x + m) : x; } y -= t * x; } } // M: prime, G: primitive root class Fft(int M_, int G, int K) { import std.algorithm : reverse; import std.traits : isIntegral; alias M = M_; // 1, 1/4, 1/8, 3/8, 1/16, 5/16, 3/16, 7/16, ... int[] gs; this() { static assert(2 <= K && K <= 30, "Fft: 2 <= K <= 30 must hold"); static assert(!((M - 1) & ((1 << K) - 1)), "Fft: 2^K | M - 1 must hold"); gs = new int[1 << (K - 1)]; gs[0] = 1; long g2 = G, gg = 1; for (int e = (M - 1) >> K; e; e >>= 1) { if (e & 1) gg = (gg * g2) % M; g2 = (g2 * g2) % M; } gs[1 << (K - 2)] = cast(int)(gg); for (int l = 1 << (K - 2); l >= 2; l >>= 1) { gs[l >> 1] = cast(int)((cast(long)(gs[l]) * gs[l]) % M); } assert((cast(long)(gs[1]) * gs[1]) % M == M - 1, "Fft: g^(2^(K-1)) == -1 (mod M) must hold"); for (int l = 2; l <= 1 << (K - 2); l <<= 1) { foreach (i; 1 .. l) { gs[l + i] = cast(int)((cast(long)(gs[l]) * gs[i]) % M); } } } void fft(int[] xs) const { const n = cast(int)(xs.length); assert(!(n & (n - 1)), "Fft.fft: |xs| must be a power of two"); assert(n <= 1 << K, "Fft.fft: |xs| <= 2^K must hold"); for (int l = n; l >>= 1; ) { foreach (i; 0 .. (n >> 1) / l) { const(long) g = gs[i]; foreach (j; (i << 1) * l .. (i << 1 | 1) * l) { const t = cast(int)((g * xs[j + l]) % M); if ((xs[j + l] = xs[j] - t) < 0) xs[j + l] += M; if ((xs[j] += t) >= M) xs[j] -= M; } } } } void invFft(int[] xs) const { const n = cast(int)(xs.length); assert(!(n & (n - 1)), "Fft.invFft: |xs| must be a power of two"); assert(n <= 1 << K, "Fft.invFft: |xs| <= 2^K must hold"); for (int l = 1; l < n; l <<= 1) reverse(xs[l .. l << 1]); for (int l = 1; l < n; l <<= 1) { foreach (i; 0 .. (n >> 1) / l) { const(long) g = gs[i]; foreach (j; (i << 1) * l .. (i << 1 | 1) * l) { int t = cast(int)((g * (xs[j] - xs[j + l])) % M); if (t < 0) t += M; if ((xs[j] += xs[j + l]) >= M) xs[j] -= M; xs[j + l] = t; } } } } T[] convolute(T)(inout(T)[] as, inout(T)[] bs) const if (isIntegral!T) { const na = cast(int)(as.length), nb = cast(int)(bs.length); int n, invN = 1; for (n = 1; n < na + nb - 1; n <<= 1) { invN = ((invN & 1) ? (invN + M) : invN) >> 1; } auto xs = new int[n], ys = new int[n]; foreach (i; 0 .. na) if ((xs[i] = cast(int)(as[i] % M)) < 0) xs[i] += M; foreach (i; 0 .. nb) if ((ys[i] = cast(int)(bs[i] % M)) < 0) ys[i] += M; fft(xs); fft(ys); foreach (i; 0 .. n) { xs[i] = cast(int)((((cast(long)(xs[i]) * ys[i]) % M) * invN) % M); } invFft(xs); auto cs = new T[na + nb - 1]; foreach (i; 0 .. na + nb - 1) cs[i] = cast(T)(xs[i]); return cs; } ModInt!M[] convolute(inout(ModInt!M)[] as, inout(ModInt!M)[] bs) const { const na = cast(int)(as.length), nb = cast(int)(bs.length); int n, invN = 1; for (n = 1; n < na + nb - 1; n <<= 1) { invN = ((invN & 1) ? (invN + M) : invN) >> 1; } auto xs = new int[n], ys = new int[n]; foreach (i; 0 .. na) xs[i] = as[i].x; foreach (i; 0 .. nb) ys[i] = bs[i].x; fft(xs); fft(ys); foreach (i; 0 .. n) { xs[i] = cast(int)((((cast(long)(xs[i]) * ys[i]) % M) * invN) % M); } invFft(xs); auto cs = new ModInt!M[na + nb - 1]; foreach (i; 0 .. na + nb - 1) cs[i].x = xs[i]; return cs; } int[] convolute(int M1)(inout(ModInt!M1)[] as, inout(ModInt!M1)[] bs) const if (M != M1) { const na = cast(int)(as.length), nb = cast(int)(bs.length); int n, invN = 1; for (n = 1; n < na + nb - 1; n <<= 1) { invN = ((invN & 1) ? (invN + M) : invN) >> 1; } auto xs = new int[n], ys = new int[n]; foreach (i; 0 .. na) xs[i] = as[i].x; foreach (i; 0 .. nb) ys[i] = bs[i].x; fft(xs); fft(ys); foreach (i; 0 .. n) { xs[i] = cast(int)((((cast(long)(xs[i]) * ys[i]) % M) * invN) % M); } invFft(xs); return xs[0 .. na + nb - 1]; } } alias Fft0 = Fft!(998244353, 3, 20); // Fft3_0.M Fft3_1.M Fft3_2.M > 1.15 * 10^27, > 2^89.9 //* enum FFT_K = 20; alias Fft3_0 = Fft!(1045430273, 3, FFT_K); // 2^20 997 + 1 alias Fft3_1 = Fft!(1051721729, 6, FFT_K); // 2^20 1003 + 1 alias Fft3_2 = Fft!(1053818881, 7, FFT_K); // 2^20 1005 + 1 //*/ // Fft3_0.M Fft3_1.M Fft3_2.M > 5.95 * 10^25, > 2^85.6 /* enum FFT_K = 24; alias Fft3_0 = Fft!(167772161, 3, FFT_K); // 2^25 5 + 1 alias Fft3_1 = Fft!(469762049, 3, FFT_K); // 2^26 7 + 1 alias Fft3_2 = Fft!(754974721, 11, FFT_K); // 2^24 45 + 1 //*/ enum long FFT_INV01 = modInv(Fft3_0.M, Fft3_1.M); enum long FFT_INV012 = modInv(cast(long)(Fft3_0.M) * Fft3_1.M, Fft3_2.M); Fft3_0 FFT3_0; Fft3_1 FFT3_1; Fft3_2 FFT3_2; void initFft3() { FFT3_0 = new Fft3_0; FFT3_1 = new Fft3_1; FFT3_2 = new Fft3_2; } // for negative result, if (!(0 <= c && c < <bound>)) add MMM: // enum MMM = 1L * Fft3_0.M * Fft3_1.M * Fft3_2.M; long[] convolute(inout(long)[] as, inout(long)[] bs) { const cs0 = FFT3_0.convolute(as, bs); const cs1 = FFT3_1.convolute(as, bs); const cs2 = FFT3_2.convolute(as, bs); auto cs = new long[cs0.length]; foreach (i; 0 .. cs0.length) { long d0 = cs0[i] % Fft3_0.M; long d1 = (FFT_INV01 * (cs1[i] - d0)) % Fft3_1.M; if (d1 < 0) d1 += Fft3_1.M; long d2 = (FFT_INV012 * ((cs2[i] - d0 - Fft3_0.M * d1) % Fft3_2.M)) % Fft3_2.M; if (d2 < 0) d2 += Fft3_2.M; cs[i] = d0 + Fft3_0.M * d1 + (cast(long)(Fft3_0.M) * Fft3_1.M) * d2; } return cs; } long[] convolute(inout(long)[] as, inout(long)[] bs, long m) { const cs0 = FFT3_0.convolute(as, bs); const cs1 = FFT3_1.convolute(as, bs); const cs2 = FFT3_2.convolute(as, bs); auto cs = new long[cs0.length]; foreach (i; 0 .. cs0.length) { long d0 = cs0[i] % Fft3_0.M; long d1 = (FFT_INV01 * (cs1[i] - d0)) % Fft3_1.M; if (d1 < 0) d1 += Fft3_1.M; long d2 = (FFT_INV012 * ((cs2[i] - d0 - Fft3_0.M * d1) % Fft3_2.M)) % Fft3_2.M; if (d2 < 0) d2 += Fft3_2.M; cs[i] = (d0 + Fft3_0.M * d1 + ((cast(long)(Fft3_0.M) * Fft3_1.M) % m) * d2) % m; } return cs; } ModInt!M[] convolute(int M)(inout(ModInt!M)[] as, inout(ModInt!M)[] bs) { const cs0 = FFT3_0.convolute(as, bs); const cs1 = FFT3_1.convolute(as, bs); const cs2 = FFT3_2.convolute(as, bs); auto cs = new ModInt!M[cs0.length]; foreach (i; 0 .. cs0.length) { long d0 = cs0[i] % Fft3_0.M; long d1 = (FFT_INV01 * (cs1[i] - d0)) % Fft3_1.M; if (d1 < 0) d1 += Fft3_1.M; long d2 = (FFT_INV012 * ((cs2[i] - d0 - Fft3_0.M * d1) % Fft3_2.M)) % Fft3_2.M; if (d2 < 0) d2 += Fft3_2.M; cs[i] = (d0 + Fft3_0.M * d1 + ((cast(long)(Fft3_0.M) * Fft3_1.M) % M) * d2) % M; } return cs; } enum LIM = 2 * 10^^5 + 10; Mint[] inv, fac, invFac; void prepare() { inv = new Mint[LIM]; fac = new Mint[LIM]; invFac = new Mint[LIM]; inv[1] = 1; foreach (i; 2 .. LIM) { inv[i] = -(Mint.M / i) * inv[cast(size_t)(Mint.M % i)]; } fac[0] = invFac[0] = 1; foreach (i; 1 .. LIM) { fac[i] = fac[i - 1] * i; invFac[i] = invFac[i - 1] * inv[i]; } } Mint binom(long n, long k) { if (0 <= k && k <= n) { assert(n < LIM); return fac[cast(size_t)(n)] * invFac[cast(size_t)(k)] * invFac[cast(size_t)(n - k)]; } else { return Mint(0); } } Mint calc(int n, int k) { return Mint(n - k + 1) * Mint(n + 1)^^(k - 1); } void main() { initFft3; prepare; /* debug { foreach (n; 1 .. 7 + 1) foreach (k; 1 .. n + 1) { int cnt; foreach (p; 0 .. n^^k) { auto freq = new int[n]; foreach (i; 0 .. k) { ++freq[p / n^^i % n]; } foreach_reverse (j; 0 .. n - 1) { freq[j] += freq[j + 1]; } bool ok = true; foreach (j; 0 .. n) { ok = ok && (freq[j] <= n - j); } if (ok) { ++cnt; if (n <= 4) { writeln(iota(n).map!(i => (p / n^^i % n))); } } } writeln(n, " ", k, ": ", cnt); assert(cnt == (n - k + 1) * (n + 1)^^(k - 1)); } } //*/ try { for (; ; ) { const N = readInt(); const M = readInt(); auto S = readToken(); if (S[0] == '-' && S[M - 1] == 'o') { S = S.dup.reverse; } alias Interval = Tuple!(int, "l", int, "r"); Interval[] ps; for (int i = 0, j; i < M; i = j) { for (j = i; j < M && S[i] == S[j]; ++j) {} if (S[i] == '-') { ps ~= Interval(i, j); } } const psLen = cast(int)(ps.length); debug { writeln("ps = ", ps); } Mint ans; if (psLen == 0) { foreach (k; 0 .. N - M + 1) { ans += calc(N - M, k) * Mint(N)^^(N - k); } } else if (psLen == 1 && ps[0] == Interval(0, M)) { // for each length } else if (ps[0].l == 0 && ps[psLen - 1].r == M) { // EGF convolution } else if (ps[0].l == 0) { assert(false); } else if (ps[psLen - 1].r == N) { // mendou } else { // futsuu } ans *= (N - M + 1); writeln(ans); } } catch (EOFException e) { } }