結果

問題 No.1200 お菓子配り-3
ユーザー FF256grhyFF256grhy
提出日時 2020-08-29 00:00:35
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
RE  
実行時間 -
コード長 5,110 bytes
コンパイル時間 2,442 ms
コンパイル使用メモリ 214,552 KB
実行使用メモリ 6,824 KB
最終ジャッジ日時 2024-11-14 17:11:31
合計ジャッジ時間 10,601 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,820 KB
testcase_02 AC 3 ms
6,816 KB
testcase_03 AC 2 ms
6,820 KB
testcase_04 AC 2 ms
6,820 KB
testcase_05 AC 2 ms
6,816 KB
testcase_06 AC 2 ms
6,816 KB
testcase_07 AC 4 ms
6,816 KB
testcase_08 AC 4 ms
6,816 KB
testcase_09 AC 5 ms
6,816 KB
testcase_10 AC 5 ms
6,816 KB
testcase_11 AC 4 ms
6,816 KB
testcase_12 AC 22 ms
6,820 KB
testcase_13 AC 24 ms
6,816 KB
testcase_14 AC 24 ms
6,816 KB
testcase_15 AC 25 ms
6,820 KB
testcase_16 AC 24 ms
6,816 KB
testcase_17 AC 84 ms
6,816 KB
testcase_18 AC 121 ms
6,820 KB
testcase_19 AC 29 ms
6,816 KB
testcase_20 AC 224 ms
6,820 KB
testcase_21 AC 224 ms
6,816 KB
testcase_22 AC 262 ms
6,824 KB
testcase_23 AC 218 ms
6,816 KB
testcase_24 AC 231 ms
6,816 KB
testcase_25 AC 223 ms
6,820 KB
testcase_26 AC 225 ms
6,820 KB
testcase_27 AC 1 ms
6,816 KB
testcase_28 AC 229 ms
6,816 KB
testcase_29 AC 2,429 ms
6,816 KB
testcase_30 AC 2,421 ms
6,816 KB
testcase_31 RE -
testcase_32 RE -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
using LL = long long int;
#define incII(i, l, r) for(LL i = (l)    ; i <= (r); i++)
#define incID(i, l, r) for(LL i = (l)    ; i <  (r); i++)
#define incCI(i, l, r) for(LL i = (l) + 1; i <= (r); i++)
#define incCD(i, l, r) for(LL i = (l) + 1; i <  (r); i++)
#define decII(i, l, r) for(LL i = (r)    ; i >= (l); i--)
#define decID(i, l, r) for(LL i = (r) - 1; i >= (l); i--)
#define decCI(i, l, r) for(LL i = (r)    ; i >  (l); i--)
#define decCD(i, l, r) for(LL i = (r) - 1; i >  (l); i--)
#define inc(i, n)  incID(i, 0, n)
#define dec(i, n)  decID(i, 0, n)
#define inc1(i, n) incII(i, 1, n)
#define dec1(i, n) decII(i, 1, n)
auto inII = [](auto v, auto l, auto r) { return (l <= v && v <= r); };
auto inID = [](auto v, auto l, auto r) { return (l <= v && v <  r); };
auto inCI = [](auto v, auto l, auto r) { return (l <  v && v <= r); };
auto inCD = [](auto v, auto l, auto r) { return (l <  v && v <  r); };
#define PB push_back
#define EB emplace_back
#define MP make_pair
#define MT make_tuple
#define FI first
#define SE second
#define FR front()
#define BA back()
#define ALL(v) v.begin(), v.end()
#define RALL(v) v.rbegin(), v.rend()
auto setmin   = [](auto & a, auto b) { return (b <  a ? a = b, true : false); };
auto setmax   = [](auto & a, auto b) { return (b >  a ? a = b, true : false); };
auto setmineq = [](auto & a, auto b) { return (b <= a ? a = b, true : false); };
auto setmaxeq = [](auto & a, auto b) { return (b >= a ? a = b, true : false); };
#define SC static_cast
#define SI(v) SC<int>(v.size())
#define SL(v) SC<LL >(v.size())
#define RF(e, v) for(auto & e: v)
#define until(e) while(! (e))
#define if_not(e) if(! (e))
#define ef else if
#define UR assert(false)
#define CT continue
#define RV(v) reverse(ALL(v))
auto * IS = & cin;
// input elements (as a tuple)
template<typename U, int I> void in_([[maybe_unused]] U & t) { }
template<typename U, int I, typename A, typename ... B> void in_(U & t) { (* IS) >> get<I>(t); in_<U, I + 1, B ...>(t); }
template<typename ... T> auto in() { tuple<T ...> t; in_<tuple<T ...>, 0, T ...>(t); return t; }
// input an array
template<typename T, int N> auto ain() { array<T, N> a; inc(i, N) { (* IS) >> a[i]; } return a; }
// input a (multi-dimensional) vector
template<typename T> T vin() { T v; (* IS) >> v; return v; }
template<typename T, typename N, typename ... M> auto vin(N n, M ... m) {
	vector<decltype(vin<T, M ...>(m ...))> v(n); inc(i, n) { v[i] = vin<T, M ...>(m ...); } return v;
}
// input multi-column (as a tuple of vector)
template<typename U, int I> void colin_([[maybe_unused]] U & t) { }
template<typename U, int I, typename A, typename ... B> void colin_(U & t) {
	A a; (* IS) >> a; get<I>(t).push_back(a); colin_<U, I + 1, B ...>(t);
}
template<typename ... T> auto colin(int n) {
	tuple<vector<T> ...> t; inc(i, n) { colin_<tuple<vector<T> ...>, 0, T ...>(t); } return t;
}
auto * OS = & cout;
// output elements
void out_([[maybe_unused]] string s) { }
template<typename A> void out_([[maybe_unused]] string s, A && a) { (* OS) << a; }
template<typename A, typename ... B> void out_(string s, A && a, B && ... b) { (* OS) << a << s; out_(s, b ...); }
auto outF = [](auto x, auto y, auto z, auto ... a) { (* OS) << x; out_(y, a ...); (* OS) << z << flush; };
auto out  = [](auto ... a) { outF("", " " , "\n", a ...); };
auto outS = [](auto ... a) { outF("", " " , " " , a ...); };
auto outL = [](auto ... a) { outF("", "\n", "\n", a ...); };
auto outN = [](auto ... a) { outF("", ""  , ""  , a ...); };
array<string, 3> SEQ_FMT = { "", " ", "" };
auto & SEQ_BEG = SEQ_FMT[0];
auto & SEQ_MID = SEQ_FMT[1];
auto & SEQ_END = SEQ_FMT[2];
// output a (multi-dimensional) vector
template<typename T> ostream & operator<<(ostream & os, vector<T> const & v) {
	os << SEQ_BEG; inc(i, SI(v)) { os << (i == 0 ? "" : SEQ_MID) << v[i]; } return (os << SEQ_END);
}
template<typename T> void vout_(T && v) { (* OS) << v; }
template<typename T, typename A, typename ... B> void vout_(T && v, A a, B ... b) {
	inc(i, SI(v)) { (* OS) << (i == 0 ? "" : a); vout_(v[i], b ...); }
}
template<typename T, typename A, typename ... B> void vout(T && v, A a, B ... b) {
	vout_(v, b ...); (* OS) << a << flush;
}

// ---- ----

vector<pair<LL, LL>> prime_factorization(LL x) {
	assert(x > 0);
	vector<pair<LL, LL>> f;
	for(LL i = 2; i <= x; i++) {
		if(i * i > x) { i = x; }
		if(x % i == 0) {
			f.EB(i, 0);
			while(x % i == 0) { f.back().SE++; x /= i; }
		}
	}
	return f;
}

vector<LL> divisors(LL x) {
	auto pf = prime_factorization(x);
	vector<LL> d = { 1 };
	for(auto e: pf) {
		int ds = d.size();
		inc(i, ds) {
			LL v = d[i];
			inc(j, e.SE) { v *= e.FI; d.PB(v); }
		}
	}
	sort(ALL(d));
	return d;
}

int main() {
	auto [Q] = in<int>();
	inc(q, Q) {
		auto [x, y] = in<int, int>();
		if_not(x >= y) { swap(x, y); }
		auto D = divisors(x - y);
		int ans = (x == y ? x - 1 : 0);
		RF(m, D) {
			LL a = m + 1;
			if(x >= a * y) { CT; }
			if((x + y) % (a + 1) != 0) { CT; }
			LL d = (x - y) / (a - 1);
			LL e = (x + y) / (a + 1);
			if(d % 2 != e % 2) { CT; }
			ans++;
		}
		out(ans);
	}
}
0