結果

問題 No.93 ペガサス
ユーザー Komaki__Komaki__
提出日時 2014-12-07 22:17:02
言語 C++11
(gcc 11.4.0)
結果
WA  
実行時間 -
コード長 5,156 bytes
コンパイル時間 1,634 ms
コンパイル使用メモリ 162,624 KB
実行使用メモリ 19,328 KB
最終ジャッジ日時 2024-06-11 17:41:59
合計ジャッジ時間 2,711 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 6 ms
19,200 KB
testcase_01 AC 6 ms
19,200 KB
testcase_02 AC 7 ms
19,304 KB
testcase_03 AC 8 ms
19,180 KB
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 AC 7 ms
19,072 KB
testcase_18 AC 7 ms
19,200 KB
testcase_19 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifdef KOMAKI_LOCAL
#include <omp.h>
#else
#define NDEBUG
#endif

#include <bits/stdc++.h>
#include <sys/time.h>
#include <unistd.h>
using namespace std;
#define i64         int64_t
#define rep(i, n)   for(i64 i = 0; i < ((i64)(n)); ++i)
#define sz(v)       ((i64)((v).size()))
#define bit(n)      (((i64)1)<<((i64)(n)))
#define all(v)      (v).begin(), (v).end()





/******************************************************************/
/*                                                                */
/* Undefine "GF_USE_FIXED_GF" to use various mods, but slower.    */
/* To use fixed one, set your mod at "static const int mod = ;"   */
/*                                                                */
/******************************************************************/

#define GF_USE_FIXED_GF
template <typename T> class GF
{
public:
  #ifdef GF_USE_FIXED_GF
  static const T mod = 1e9 + 7; // Set your mod!
  GF() { permutation_memo = std::vector<T>(1, 1); inverse_memo = std::vector<T>(2, 1); permutation_inverse_memo = std::vector<T>(2, 1); }
  #else
  T mod;
  GF(T mod) : mod(mod) { permutation_memo = std::vector<T>(1, 1); inverse_memo = std::vector<T>(2, 1); permutation_inverse_memo = std::vector<T>(2, 1); } 
  #endif 


  T norm(T i);

  T add(T i0, T i1);
  T sub(T i0, T i1);
  T mul(T i0, T i1);
  T div(T i0, T i1);
  T pow(T i, int64_t p);
  T inv(T i);
  T permInv(T i);
  
  T permutation(T n, T m); // n * (n - 1) * ... * (n - m + 1), Non limited memorization, Avoid segmentation fault!
  T combination(T n, T m); // Memorized for n < MEMO_SIZE_LIMIT.
  
private:
  static const int MEMO_SIZE_LIMIT = 2000000;
  std::vector<T> permutation_memo;
  std::vector<T> inverse_memo;
  std::vector<T> permutation_inverse_memo;
};


template <typename T>
inline T GF<T>::permutation(T n, T m)
{
  if(m < 0 || n < m) return 0;
  while(permutation_memo.size() <= n){
    permutation_memo.push_back(mul(permutation_memo.back(), permutation_memo.size()));
  }
  return mul(permutation_memo[n], permInv(n - m));
}

template <typename T>
inline T GF<T>::combination(T n, T m)
{
  if(m < 0 || n < m) return 0;
  if(n - m < m) m = n - m;
  
  if(n < MEMO_SIZE_LIMIT){
    T num = permutation(n, n);
    T den = mul(permInv(m), permInv(n - m));
    return mul(num, den);
  }
  
  T num = 1, den = 1;
  for(T i = 0; i < m; ++i){
    num = mul(num, n - i);
    den = mul(den, i + 1);
  }
  return div(num, den);
}

template <typename T>
inline T GF<T>::norm(T i)
{
  return (i % mod + mod) % mod;
}

template <typename T> 
inline T GF<T>::add(T i0, T i1)
{
  T res = i0 + i1;
  if(mod <= res) return res - mod;
  return res;
}

template <typename T> 
inline T GF<T>::sub(T i0, T i1)
{
  T res = i0 - i1;
  if(res < 0) return res + mod;
  return res;
}

template <typename T> 
inline T GF<T>::mul(T i0, T i1)
{
  return (int64_t)i0 * i1 % mod;
}

template <typename T> 
inline T GF<T>::div(T i0, T i1)
{
  return mul(i0, inv(i1));
}

template <typename T>
inline T GF<T>::permInv(T i)
{
  while(permutation_inverse_memo.size() <= i){
    permutation_inverse_memo.push_back(mul(permutation_inverse_memo.back(), inv(permutation_inverse_memo.size())));
  }
  return permutation_inverse_memo[i];
}

template <typename T> 
inline T GF<T>::inv(T i)
{
  if(i < MEMO_SIZE_LIMIT){
    while(inverse_memo.size() <= i){
      // Deformation of formula. 
      // b[t] * t = (M - (M / t) * t) * b[M - (M / t) * t];
      // Divides by i over a finite field GF(mod), b[t] = - (M / t) * b[M % t].
      int size = inverse_memo.size();
      inverse_memo.push_back(mod - (int64_t)(mod / size) * inverse_memo[mod % size] % mod);
    }
    return inverse_memo[i];
  }

  return this->pow(i, mod - 2);
}

template <typename T> 
inline T GF<T>::pow(T i, int64_t p)
{
  T res = 1;
  for(; p; p >>= 1){
    if(p & 1) res = mul(res, i);
    i = mul(i, i);
  }
  return res;
}




















const i64 N = 1005;
const i64 MOD = 1e9 + 7;
i64 dp[N][N];
i64 sub_dp[N][N];
i64 recur(i64 pos, i64 rem);
i64 subRecur(i64 pos, i64 rem)
{
  if(pos <  0) return 0;
  if(rem == 0) return 1;
  if(pos == 0) return 0;
  i64 &res = sub_dp[pos][rem];
  if(res != -1) return res;
  return res = (recur(pos, rem) + subRecur(pos - 1, rem - 1)) % MOD;
}
i64 recur(i64 pos, i64 rem)
{
  if(pos <  0) return 0;
  if(rem == 0) return 1;
  if(pos == 0) return 0;

  i64 &res = dp[pos][rem];
  if(res != -1) return res;
  res = recur(pos - 1, rem - 0);
  res = (res + subRecur(pos - 2, rem - 1) * 2) % MOD;
  return res;
}


int main()
{
  memset(dp, -1, sizeof(dp));
  memset(sub_dp, -1, sizeof(sub_dp));

  i64 n;
  cin >> n;
  i64 ans = 0;


  GF<int> gf;
  
  rep(i, n){
    i64 k = gf.permutation(n - i, n - i);
    i64 way = 0;
    for(i64 use = 0; use <= i; ++use) way = way + recur(n / 2, use) * recur(n - n / 2, i - use) % MOD;
    ans += k * way % MOD * (i % 2 == 0 ? 1 : -1);
  }
  cout << (ans % MOD + MOD) % MOD << endl;
}










0