結果
問題 | No.1200 お菓子配り-3 |
ユーザー | Kiri8128 |
提出日時 | 2020-08-29 17:39:35 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 533 ms / 4,000 ms |
コード長 | 2,840 bytes |
コンパイル時間 | 257 ms |
コンパイル使用メモリ | 82,588 KB |
実行使用メモリ | 81,464 KB |
最終ジャッジ日時 | 2024-11-20 23:02:27 |
合計ジャッジ時間 | 8,413 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 40 ms
52,468 KB |
testcase_01 | AC | 40 ms
52,888 KB |
testcase_02 | AC | 46 ms
61,800 KB |
testcase_03 | AC | 42 ms
54,324 KB |
testcase_04 | AC | 41 ms
53,388 KB |
testcase_05 | AC | 41 ms
54,040 KB |
testcase_06 | AC | 45 ms
60,020 KB |
testcase_07 | AC | 72 ms
72,600 KB |
testcase_08 | AC | 71 ms
71,908 KB |
testcase_09 | AC | 66 ms
69,404 KB |
testcase_10 | AC | 70 ms
70,076 KB |
testcase_11 | AC | 70 ms
71,136 KB |
testcase_12 | AC | 173 ms
77,036 KB |
testcase_13 | AC | 173 ms
77,320 KB |
testcase_14 | AC | 170 ms
77,548 KB |
testcase_15 | AC | 168 ms
77,196 KB |
testcase_16 | AC | 167 ms
77,484 KB |
testcase_17 | AC | 316 ms
78,392 KB |
testcase_18 | AC | 396 ms
80,624 KB |
testcase_19 | AC | 182 ms
77,356 KB |
testcase_20 | AC | 499 ms
81,072 KB |
testcase_21 | AC | 478 ms
81,464 KB |
testcase_22 | AC | 521 ms
81,236 KB |
testcase_23 | AC | 460 ms
80,232 KB |
testcase_24 | AC | 494 ms
81,264 KB |
testcase_25 | AC | 449 ms
79,972 KB |
testcase_26 | AC | 496 ms
80,928 KB |
testcase_27 | AC | 40 ms
53,256 KB |
testcase_28 | AC | 533 ms
79,076 KB |
testcase_29 | AC | 349 ms
79,076 KB |
testcase_30 | AC | 357 ms
79,980 KB |
testcase_31 | AC | 40 ms
54,088 KB |
testcase_32 | AC | 40 ms
52,716 KB |
ソースコード
import sys input = lambda: sys.stdin.readline().rstrip() def gcd(a, b): while b: a, b = b, a % b return a def isPrimeMR(n): d = n - 1 d = d // (d & -d) L = [2, 7, 61] if n < 1<<32 else [2, 3, 5, 7, 11, 13, 17] if n < 1<<48 else [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37] for a in L: t = d y = pow(a, t, n) if y == 1: continue while y != n - 1: y = y * y % n if y == 1 or t == n - 1: return 0 t <<= 1 return 1 def findFactorRho(n): m = 1 << n.bit_length() // 8 for c in range(1, 99): f = lambda x: (x * x + c) % n y, r, q, g = 2, 1, 1, 1 while g == 1: x = y for i in range(r): y = f(y) k = 0 while k < r and g == 1: ys = y for i in range(min(m, r - k)): y = f(y) q = q * abs(x - y) % n g = gcd(q, n) k += m r <<= 1 if g == n: g = 1 while g == 1: ys = f(ys) g = gcd(abs(x - ys), n) if g < n: if isPrimeMR(g): return g elif isPrimeMR(n // g): return n // g return findFactorRho(g) def primeFactor(n): i = 2 ret = {} rhoFlg = 0 while i * i <= n: k = 0 while n % i == 0: n //= i k += 1 if k: ret[i] = k i += i % 2 + (3 if i % 3 == 1 else 1) if i == 101 and n >= 2 ** 20: while n > 1: if isPrimeMR(n): ret[n], n = 1, 1 else: rhoFlg = 1 j = findFactorRho(n) k = 0 while n % j == 0: n //= j k += 1 ret[j] = k if n > 1: ret[n] = 1 if rhoFlg: ret = {x: ret[x] for x in sorted(ret)} return ret def divisors(N): pf = primeFactor(N) ret = [1] for p in pf: ret_prev = ret ret = set() for i in range(pf[p]+1): for r in ret_prev: ret.add(r * (p ** i)) return ret S = int(input()) for _ in range(S): X, Y = map(int, input().split()) d1 = {a+1 for a in divisors(abs(X - Y))} d2 = {a-1 for a in divisors(X + Y)} if X == Y: d = d2 else: d = d1 & d2 ans = 0 for a in d: if a == 0: continue if a == 1: ans += X - 1 continue bmc = (X - Y) // (a - 1) bpc = (X + Y) // (a + 1) if (bmc ^ bpc) & 1: continue b = bmc + bpc >> 1 c = bpc - bmc >> 1 if b > 0 and c > 0: ans += 1 a = 1 print(ans)