結果

問題 No.1204 お菓子配り-FINAL
ユーザー 👑 hos.lyrichos.lyric
提出日時 2020-08-30 01:53:17
言語 D
(dmd 2.106.1)
結果
AC  
実行時間 1,160 ms / 8,000 ms
コード長 6,632 bytes
コンパイル時間 1,573 ms
コンパイル使用メモリ 160,728 KB
実行使用メモリ 7,104 KB
最終ジャッジ日時 2024-06-22 08:39:19
合計ジャッジ時間 17,547 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 11 ms
6,812 KB
testcase_01 AC 20 ms
6,944 KB
testcase_02 AC 12 ms
6,944 KB
testcase_03 AC 10 ms
6,940 KB
testcase_04 AC 22 ms
6,940 KB
testcase_05 AC 16 ms
6,944 KB
testcase_06 AC 16 ms
6,940 KB
testcase_07 AC 20 ms
6,944 KB
testcase_08 AC 11 ms
6,944 KB
testcase_09 AC 11 ms
6,944 KB
testcase_10 AC 19 ms
6,944 KB
testcase_11 AC 17 ms
6,944 KB
testcase_12 AC 17 ms
6,940 KB
testcase_13 AC 17 ms
6,940 KB
testcase_14 AC 15 ms
6,940 KB
testcase_15 AC 9 ms
6,944 KB
testcase_16 AC 12 ms
6,944 KB
testcase_17 AC 9 ms
6,944 KB
testcase_18 AC 10 ms
6,940 KB
testcase_19 AC 11 ms
6,944 KB
testcase_20 AC 27 ms
6,944 KB
testcase_21 AC 123 ms
6,940 KB
testcase_22 AC 26 ms
6,944 KB
testcase_23 AC 67 ms
6,940 KB
testcase_24 AC 38 ms
6,940 KB
testcase_25 AC 10 ms
6,940 KB
testcase_26 AC 47 ms
6,944 KB
testcase_27 AC 162 ms
6,940 KB
testcase_28 AC 8 ms
6,940 KB
testcase_29 AC 51 ms
6,940 KB
testcase_30 AC 58 ms
6,940 KB
testcase_31 AC 127 ms
6,940 KB
testcase_32 AC 12 ms
6,940 KB
testcase_33 AC 64 ms
6,944 KB
testcase_34 AC 22 ms
6,940 KB
testcase_35 AC 33 ms
6,944 KB
testcase_36 AC 64 ms
6,940 KB
testcase_37 AC 53 ms
6,944 KB
testcase_38 AC 28 ms
6,944 KB
testcase_39 AC 27 ms
6,944 KB
testcase_40 AC 23 ms
6,940 KB
testcase_41 AC 9 ms
6,940 KB
testcase_42 AC 7 ms
6,944 KB
testcase_43 AC 9 ms
6,944 KB
testcase_44 AC 8 ms
6,944 KB
testcase_45 AC 8 ms
6,940 KB
testcase_46 AC 8 ms
6,940 KB
testcase_47 AC 8 ms
6,944 KB
testcase_48 AC 22 ms
6,940 KB
testcase_49 AC 17 ms
6,940 KB
testcase_50 AC 19 ms
6,944 KB
testcase_51 AC 10 ms
6,940 KB
testcase_52 AC 9 ms
6,940 KB
testcase_53 AC 16 ms
6,944 KB
testcase_54 AC 23 ms
6,944 KB
testcase_55 AC 9 ms
6,944 KB
testcase_56 AC 19 ms
6,944 KB
testcase_57 AC 7 ms
6,940 KB
testcase_58 AC 13 ms
6,940 KB
testcase_59 AC 15 ms
6,944 KB
testcase_60 AC 7 ms
6,944 KB
testcase_61 AC 8 ms
6,940 KB
testcase_62 AC 8 ms
6,940 KB
testcase_63 AC 8 ms
6,944 KB
testcase_64 AC 7 ms
6,940 KB
testcase_65 AC 7 ms
6,944 KB
testcase_66 AC 8 ms
6,944 KB
testcase_67 AC 8 ms
6,940 KB
testcase_68 AC 8 ms
6,944 KB
testcase_69 AC 7 ms
6,940 KB
testcase_70 AC 8 ms
6,944 KB
testcase_71 AC 8 ms
6,940 KB
testcase_72 AC 8 ms
6,944 KB
testcase_73 AC 8 ms
6,940 KB
testcase_74 AC 7 ms
6,944 KB
testcase_75 AC 7 ms
6,944 KB
testcase_76 AC 8 ms
6,944 KB
testcase_77 AC 7 ms
6,944 KB
testcase_78 AC 8 ms
6,984 KB
testcase_79 AC 8 ms
6,940 KB
testcase_80 AC 7 ms
6,944 KB
testcase_81 AC 8 ms
7,004 KB
testcase_82 AC 8 ms
6,944 KB
testcase_83 AC 7 ms
6,944 KB
testcase_84 AC 7 ms
6,940 KB
testcase_85 AC 7 ms
6,940 KB
testcase_86 AC 7 ms
6,944 KB
testcase_87 AC 8 ms
6,944 KB
testcase_88 AC 8 ms
6,944 KB
testcase_89 AC 7 ms
6,940 KB
testcase_90 AC 472 ms
6,940 KB
testcase_91 AC 121 ms
7,104 KB
testcase_92 AC 224 ms
6,940 KB
testcase_93 AC 559 ms
6,944 KB
testcase_94 AC 426 ms
6,940 KB
testcase_95 AC 652 ms
6,940 KB
testcase_96 AC 1,160 ms
6,944 KB
testcase_97 AC 126 ms
6,944 KB
testcase_98 AC 443 ms
6,940 KB
testcase_99 AC 629 ms
6,948 KB
testcase_100 AC 48 ms
6,940 KB
testcase_101 AC 428 ms
6,940 KB
testcase_102 AC 876 ms
6,944 KB
testcase_103 AC 794 ms
6,940 KB
testcase_104 AC 996 ms
6,944 KB
testcase_105 AC 99 ms
6,940 KB
testcase_106 AC 10 ms
6,944 KB
testcase_107 AC 57 ms
6,940 KB
testcase_108 AC 458 ms
6,944 KB
testcase_109 AC 620 ms
6,944 KB
testcase_110 AC 119 ms
6,944 KB
testcase_111 AC 40 ms
6,940 KB
testcase_112 AC 39 ms
6,944 KB
testcase_113 AC 54 ms
6,944 KB
testcase_114 AC 85 ms
6,944 KB
testcase_115 AC 85 ms
6,940 KB
testcase_116 AC 119 ms
6,940 KB
testcase_117 AC 70 ms
6,944 KB
testcase_118 AC 24 ms
6,940 KB
testcase_119 AC 133 ms
6,940 KB
testcase_120 AC 193 ms
6,960 KB
testcase_121 AC 38 ms
6,944 KB
testcase_122 AC 100 ms
6,944 KB
testcase_123 AC 24 ms
6,940 KB
testcase_124 AC 194 ms
6,944 KB
testcase_125 AC 147 ms
6,944 KB
testcase_126 AC 71 ms
6,940 KB
testcase_127 AC 86 ms
6,944 KB
testcase_128 AC 86 ms
6,940 KB
testcase_129 AC 441 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import std.conv, std.functional, std.range, std.stdio, std.string;
import std.algorithm, std.array, std.bigint, std.bitmanip, std.complex, std.container, std.math, std.mathspecial, std.numeric, std.regex, std.typecons;
import core.bitop;

class EOFException : Throwable { this() { super("EOF"); } }
string[] tokens;
string readToken() { for (; tokens.empty; ) { if (stdin.eof) { throw new EOFException; } tokens = readln.split; } auto token = tokens.front; tokens.popFront; return token; }
int readInt() { return readToken.to!int; }
long readLong() { return readToken.to!long; }
real readReal() { return readToken.to!real; }

bool chmin(T)(ref T t, in T f) { if (t > f) { t = f; return true; } else { return false; } }
bool chmax(T)(ref T t, in T f) { if (t < f) { t = f; return true; } else { return false; } }

int binarySearch(alias pred, T)(in T[] as) { int lo = -1, hi = cast(int)(as.length); for (; lo + 1 < hi; ) { const mid = (lo + hi) >> 1; (unaryFun!pred(as[mid]) ? hi : lo) = mid; } return hi; }
int lowerBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a >= val)); }
int upperBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a > val)); }


struct ModInt(int M_) {
  import std.conv : to;
  alias M = M_;
  int x;
  this(ModInt a) { x = a.x; }
  this(long a) { x = cast(int)(a % M); if (x < 0) x += M; }
  ref ModInt opAssign(long a) { return (this = ModInt(a)); }
  ref ModInt opOpAssign(string op)(ModInt a) {
    static if (op == "+") { x += a.x; if (x >= M) x -= M; }
    else static if (op == "-") { x -= a.x; if (x < 0) x += M; }
    else static if (op == "*") { x = cast(int)((cast(long)(x) * a.x) % M); }
    else static if (op == "/") { this *= a.inv(); }
    else static assert(false);
    return this;
  }
  ref ModInt opOpAssign(string op)(long a) {
    static if (op == "^^") {
      if (a < 0) return (this = inv()^^(-a));
      ModInt t2 = this, te = ModInt(1);
      for (long e = a; e > 0; e >>= 1) {
        if (e & 1) te *= t2;
        t2 *= t2;
      }
      x = cast(int)(te.x);
      return this;
    } else return mixin("this " ~ op ~ "= ModInt(a)");
  }
  ModInt inv() const {
    int a = x, b = M, y = 1, z = 0, t;
    for (; ; ) {
      t = a / b; a -= t * b;
      if (a == 0) {
        assert(b == 1 || b == -1);
        return ModInt(b * z);
      }
      y -= t * z;
      t = b / a; b -= t * a;
      if (b == 0) {
        assert(a == 1 || a == -1);
        return ModInt(a * y);
      }
      z -= t * y;
    }
  }
  ModInt opUnary(string op: "-")() const { return ModInt(-x); }
  ModInt opBinary(string op, T)(T a) const {
    return mixin("ModInt(this) " ~ op ~ "= a");
  }
  ModInt opBinaryRight(string op)(long a) const {
    return mixin("ModInt(a) " ~ op ~ "= this");
  }
  bool opCast(T: bool)() const { return (x != 0); }
  string toString() const { return x.to!string; }
}

enum MO = 1000000007;
alias Mint = ModInt!MO;


enum LIM = 2 * 10^^5 + 10;
Mint[] inv, fac, invFac;
void prepare() {
  inv = new Mint[LIM];
  fac = new Mint[LIM];
  invFac = new Mint[LIM];
  inv[1] = 1;
  foreach (i; 2 .. LIM) {
    inv[i] = -(Mint.M / i) * inv[cast(size_t)(Mint.M % i)];
  }
  fac[0] = invFac[0] = 1;
  foreach (i; 1 .. LIM) {
    fac[i] = fac[i - 1] * i;
    invFac[i] = invFac[i - 1] * inv[i];
  }
}
Mint binom(long n, long k) {
  if (0 <= k && k <= n) {
    assert(n < LIM);
    return fac[cast(size_t)(n)] * invFac[cast(size_t)(k)] * invFac[cast(size_t)(n - k)];
  } else {
    return Mint(0);
  }
}


Mint calc(int n, int k) {
  return Mint(n - k + 1) * Mint(n + 1)^^(k - 1);
}

void main() {
  prepare;
  
  /*
  debug {
    foreach (n; 1 .. 7 + 1) foreach (k; 1 .. n + 1) {
      int cnt;
      foreach (p; 0 .. n^^k) {
        auto freq = new int[n];
        foreach (i; 0 .. k) {
          ++freq[p / n^^i % n];
        }
        foreach_reverse (j; 0 .. n - 1) {
          freq[j] += freq[j + 1];
        }
        bool ok = true;
        foreach (j; 0 .. n) {
          ok = ok && (freq[j] <= n - j);
        }
        if (ok) {
          ++cnt;
          if (n <= 4) {
            writeln(iota(n).map!(i => (p / n^^i % n)));
          }
        }
      }
      writeln(n, " ", k, ": ", cnt);
      assert(cnt == (n - k + 1) * (n + 1)^^(k - 1));
    }
  }
  //*/
  
  try {
    for (; ; ) {
      const N = readInt();
      const M = readInt();
      const S = readToken();
      
      alias Query = Tuple!(string, "s", int, "sig");
      auto qss = new Query[][](M + 1);
      void pie(string s, int sig) {
        if (s.length >= 1 && s[0] == '-') {
          pie(s[1 .. $], sig);
          pie('o' ~ s[1 .. $], -sig);
        } else if (s.length >= 1 && s[$ - 1] == '-') {
          pie(s[0 .. $ - 1], sig);
          pie(s[0 .. $ - 1] ~ 'o', -sig);
        } else {
          qss[s.length] ~= Query(s, sig);
        }
      }
      pie(S, +1);
      debug {
        foreach (m; 0 .. M + 1) {
          writefln("qss[%s] = %s", m, qss[m]);
        }
      }
      
      auto small = new Mint[M + 1];
      foreach (n; 0 .. M + 1) {
        small[n] = calc(n, n) * invFac[n];
      }
      
      Mint ans;
      
      // m = 0
      {
        int sigSum;
        foreach (ref q; qss[0]) {
          sigSum += q.sig;
        }
        ans += sigSum * Mint(N)^^N * Mint(N + 1);
      }
      
      foreach (m; 1 .. M + 1) {
        auto nums = new Mint[m + 1];
        foreach (ref q; qss[m]) {
          int insideSum;
          Mint insideNum = 1;
          for (int i = 0, j; i < m; i = j) {
            for (j = i; j < m && q.s[i] == q.s[j]; ++j) {}
            if (q.s[i] == '-') {
              insideSum += (j - i);
              // insideNum *= calc(j - i, j - i) * invFac[j - i];
              insideNum *= small[j - i];
            }
          }
          nums[insideSum] += q.sig * insideNum;
        }
        debug {
          writefln("m = %s, nums = %s", m, nums);
        }
        
        /*
          0 <= k <= m
          calc(N - m, k) / k! * (k + insideSum)! * N^(N - (k + insideSum))
        */
        foreach (l; 0 .. m + 1) {
          if (nums[l]) {
            Mint sum;
            // calc(n, k) = return Mint(n - k + 1) * Mint(n + 1)^^(k - 1);
            Mint pw = inv[(N - m) + 1];
            foreach (k; 0 .. N - m + 1) {
              // sum += calc(N - m, k) * invFac[k] * fac[k + l] * Mint(N)^^(N - (k + l));
              sum += Mint((N - m) - k + 1) * pw * invFac[k] * fac[k + l] * Mint(N)^^(N - (k + l));
              pw *= ((N - m) + 1);
            }
            ans += nums[l] * sum;
          }
        }
      }
      
      ans *= (N - M + 1);
      writeln(ans);
    }
  } catch (EOFException e) {
  }
}
0