結果

問題 No.1207 グラフX
ユーザー sansaquasansaqua
提出日時 2020-08-30 13:31:40
言語 Common Lisp
(sbcl 2.3.8)
結果
RE  
実行時間 -
コード長 10,888 bytes
コンパイル時間 604 ms
コンパイル使用メモリ 95,944 KB
実行使用メモリ 40,672 KB
最終ジャッジ日時 2024-11-15 06:46:22
合計ジャッジ時間 4,718 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 RE -
testcase_01 RE -
testcase_02 RE -
testcase_03 RE -
testcase_04 RE -
testcase_05 RE -
testcase_06 RE -
testcase_07 RE -
testcase_08 RE -
testcase_09 RE -
testcase_10 RE -
testcase_11 RE -
testcase_12 RE -
testcase_13 RE -
testcase_14 RE -
testcase_15 RE -
testcase_16 RE -
testcase_17 RE -
testcase_18 RE -
testcase_19 RE -
testcase_20 RE -
testcase_21 RE -
testcase_22 RE -
testcase_23 RE -
testcase_24 RE -
testcase_25 RE -
testcase_26 RE -
testcase_27 RE -
testcase_28 RE -
testcase_29 RE -
testcase_30 RE -
testcase_31 RE -
testcase_32 RE -
testcase_33 RE -
testcase_34 RE -
testcase_35 RE -
testcase_36 RE -
testcase_37 RE -
testcase_38 RE -
testcase_39 RE -
testcase_40 RE -
testcase_41 RE -
testcase_42 RE -
testcase_43 RE -
testcase_44 RE -
testcase_45 RE -
testcase_46 RE -
testcase_47 RE -
testcase_48 RE -
権限があれば一括ダウンロードができます
コンパイルメッセージ
; compiling file "/home/judge/data/code/Main.lisp" (written 15 NOV 2024 06:46:16 AM):

; file: /home/judge/data/code/Main.lisp
; in: DEFUN MAIN
;     (INCFMOD RES (MOD* COST SIZE1 SIZE2))
; 
; caught STYLE-WARNING:
;   undefined function: COMMON-LISP-USER::INCFMOD

;     (MOD* COST SIZE1 SIZE2)
; 
; caught STYLE-WARNING:
;   undefined function: COMMON-LISP-USER::MOD*

;     (READ-FIXNUM)
; 
; caught STYLE-WARNING:
;   undefined function: COMMON-LISP-USER::READ-FIXNUM
; 
; compilation unit finished
;   Undefined functions:
;     INCFMOD MOD* READ-FIXNUM
;   caught 3 STYLE-WARNING conditions

; wrote /home/judge/data/code/Main.fasl
; compilation finished in 0:00:00.469

ソースコード

diff #

#-swank
(unless (member :child-sbcl *features*)
  (quit
   :unix-status
   (process-exit-code
    (run-program *runtime-pathname*
                 `("--control-stack-size" "128MB"
                   "--noinform" "--disable-ldb" "--lose-on-corruption" "--end-runtime-options"
                   "--eval" "(push :child-sbcl *features*)"
                   "--script" ,(namestring *load-pathname*))
                 :output t :error t :input t))))
(in-package :cl-user)
(eval-when (:compile-toplevel :load-toplevel :execute)
  (sb-int:defconstant-eqx opt
    #+swank '(optimize (speed 3) (safety 2))
    #-swank '(optimize (speed 3) (safety 0) (debug 0))
    #'equal)
  #+swank (ql:quickload '(:cl-debug-print :fiveam) :silent t)
  #-swank (set-dispatch-macro-character
           #\# #\> (lambda (s c p) (declare (ignore c p)) `(values ,(read s nil nil t)))))
#+swank (cl-syntax:use-syntax cl-debug-print:debug-print-syntax)

(defmacro define-int-types (&rest bits)
  `(progn
     ,@(mapcar (lambda (b) `(deftype ,(intern (format nil "UINT~A" b)) () '(unsigned-byte ,b))) bits)
     ,@(mapcar (lambda (b) `(deftype ,(intern (format nil "INT~A" b)) () '(signed-byte ,b))) bits)))
(define-int-types 2 4 7 8 15 16 31 32 62 63 64)

(defconstant +mod+ 1000000007)

(defmacro dbg (&rest forms)
  #+swank (if (= (length forms) 1)
              `(format *error-output* "~A => ~A~%" ',(car forms) ,(car forms))
              `(format *error-output* "~A => ~A~%" ',forms `(,,@forms)))
  #-swank (declare (ignore forms)))

(declaim (inline println))
(defun println (obj &optional (stream *standard-output*))
  (let ((*read-default-float-format* 'double-float))
    (prog1 (princ obj stream) (terpri stream))))

;; BEGIN_INSERTED_CONTENTS
;;;
;;; Minimum spanning tree (Boruvka's algorithm, O(ElogV))
;;;
;;; Reference:
;;; Ahuja, Magnanti, Orlin. Network Flows: Theory, Algorithms, and Applications.
;;;

(defpackage :cp/boruvka
  (:use :cl)
  (:export #:find-mst))
(in-package :cp/boruvka)

(defconstant +inf-cost+ most-positive-fixnum)

;; Here I express each connected component as a cycle with singly-linked list,
;; though Ahuja's book adopts doubly-linked list. I learned about this technique
;; in noshi91's article: http://noshi91.hatenablog.com/entry/2019/07/19/180606
;; (Japanese)

(declaim (inline find-mst)
         (ftype (function * (values (simple-array fixnum (*))
                                    (simple-array fixnum (*))
                                    (simple-array fixnum (*))
                                    &optional))
                find-mst))
(defun find-mst (graph &key (vertex-key #'car) (cost-key #'cdr) maximize)
  "Computes an MST by Boruvka's algorithm. Returns three values: a vector that
stores each cost of the edges, two vectors that store each end of the edges. If
GRAPH is not connected, this function computes MST for each connected component.

GRAPH := vector of adjacency lists
MAXIMIZE := if true, solve maximization problem instead"
  (declare (vector graph))
  (let* ((n (length graph))
         (roots (make-array n :element-type 'fixnum))
         ;; next node in a connected component
         (nexts (make-array n :element-type 'fixnum))
         (min-costs (make-array n :element-type 'fixnum))
         (min-srcs (make-array n :element-type 'fixnum))
         (min-dests (make-array n :element-type 'fixnum))
         (edge-count 0)
         (res-costs (make-array (max 0 (- n 1)) :element-type 'fixnum))
         (res-srcs (make-array (max 0 (- n 1)) :element-type 'fixnum))
         (res-dests (make-array (max 0 (- n 1)) :element-type 'fixnum)))
    (dotimes (i n)
      (setf (aref roots i) i
            (aref nexts i) i))
    (labels ((%add (src dest cost)
               "Adds a new edge to the (unfinished) MST."
               (declare (fixnum src dest cost))
               (when (> src dest) (rotatef src dest))
               (setf (aref res-srcs edge-count) src
                     (aref res-dests edge-count) dest
                     (aref res-costs edge-count) (if maximize (- cost) cost)
                     edge-count (+ edge-count 1)))
             (%merge (root1 root2)
               "Merges ROOT2 into ROOT1."
               (loop for v = (aref nexts root2) then (aref nexts v)
                     until (= v root2)
                     do (setf (aref roots v) root1)
                     finally (setf (aref roots v) root1))
               ;; meld two cycles
               (rotatef (aref nexts root1) (aref nexts root2))))
      (loop for updated = nil
            while (< edge-count (- n 1))
            do (fill min-costs +inf-cost+)
               ;; detect minimum cost edge starting from each connected component
               (dotimes (u n)
                 (let ((root (aref roots u)))
                   (dolist (edge (aref graph u))
                     (let ((v (funcall vertex-key edge))
                           (cost (funcall cost-key edge)))
                       (declare (fixnum v cost))
                       (when maximize (setq cost (- cost)))
                       (when (and (/= root (aref roots v))
                                  (<= cost (aref min-costs root)))
                         (setf (aref min-costs root) cost
                               (aref min-srcs root) u
                               (aref min-dests root) v))))))
               ;; merge all the pairs of connected components linked with above
               ;; enumerated edges
               (dotimes (v n)
                 (let* ((root (aref roots v))
                        (src (aref min-srcs root))
                        (dest (aref min-dests root))
                        (cost (aref min-costs root)))
                   (unless (= cost +inf-cost+) ; can be true if GRAPH is not connected
                     (loop for root2 = (aref roots dest)
                           until (= root root2)
                           do (setq updated t)
                              (%add src dest cost)
                              (%merge root root2)
                              (setq src (aref min-srcs root2)
                                    dest (aref min-dests root2)
                                    cost (aref min-costs root2))))))
            while updated)
      (values (adjust-array res-costs edge-count)
              (adjust-array res-srcs edge-count)
              (adjust-array res-dests edge-count)))))

(defpackage :cp/mod-power
  (:use :cl)
  (:export #:mod-power))
(in-package :cp/mod-power)

(declaim (inline mod-power))
(defun mod-power (base power modulus)
  "Returns BASE^POWER mod MODULUS. Note: 0^0 = 1.

BASE := integer
POWER, MODULUS := non-negative fixnum"
  (declare ((integer 0 #.most-positive-fixnum) modulus power)
           (integer base))
  (let ((base (mod base modulus))
        (res (mod 1 modulus)))
    (declare ((integer 0 #.most-positive-fixnum) base res))
    (loop while (> power 0)
          when (oddp power)
          do (setq res (mod (* res base) modulus))
          do (setq base (mod (* base base) modulus)
                   power (ash power -1)))
    res))


;; BEGIN_USE_PACKAGE
(eval-when (:compile-toplevel :load-toplevel :execute)
  (use-package :cp/mod-power :cl-user))
(eval-when (:compile-toplevel :load-toplevel :execute)
  (use-package :cp/boruvka :cl-user))
(in-package :cl-user)

;;;
;;; Body
;;;

(defun main ()
  (let* ((n (read))
         (m (read))
         (x (read))
         (graph (make-array n :element-type 'list :initial-element nil))
         (res 0))
    (declare (uint31 n m x res))
    (dotimes (i m)
      (let ((x (- (read-fixnum) 1))
            (y (- (read-fixnum) 1))
            (z (read-fixnum)))
        (push (cons x z) (aref graph y))
        (push (cons y z) (aref graph x))))
    (multiple-value-bind (zs us vs) (find-mst graph)
      (dbg zs us vs)
      (let ((graph (make-array n :element-type 'list :initial-element nil))
            (sizes (make-array n :element-type 'uint31 :initial-element 0)))
        (loop for u across us
              for v across vs
              for z across zs
              for cost = (mod-power x z +mod+)
              do (push (cons u cost) (aref graph v))
                 (push (cons v cost) (aref graph u)))
        #>graph
        (sb-int:named-let dfs ((v 0) (parent -1))
          (let ((value 1))
            (loop for (child . cost) in (aref graph v)
                  unless (= child parent)
                  do (dfs child v)
                     (incf value (aref sizes child)))
            (setf (aref sizes v) value)))
        #>sizes
        (sb-int:named-let dfs ((v 0) (parent -1))
          (loop for (child . cost) of-type (uint31 . uint31) in (aref graph v)
                for size1 = (aref sizes child)
                for size2 of-type uint31 = (- n size1)
                unless (= child parent)
                do (incfmod res (mod* cost size1 size2))
                   (dfs child v)))))
    (println res)))

#-swank (main)

;;;
;;; Test and benchmark
;;;

#+swank
(defun get-clipbrd ()
  (with-output-to-string (out)
    #+os-windows (run-program "powershell.exe" '("-Command" "Get-Clipboard") :output out :search t)
    #+os-unix (run-program "xsel" '("-b" "-o") :output out :search t)))

#+swank (defparameter *this-pathname* (uiop:current-lisp-file-pathname))
#+swank (defparameter *dat-pathname* (uiop:merge-pathnames* "test.dat" *this-pathname*))

#+swank
(defun run (&optional thing (out *standard-output*))
  "THING := null | string | symbol | pathname

null: run #'MAIN using the text on clipboard as input.
string: run #'MAIN using the string as input.
symbol: alias of FIVEAM:RUN!.
pathname: run #'MAIN using the text file as input."
  (let* ((*standard-output* (or out (make-string-output-stream)))
         (res (etypecase thing
                (null
                 (with-input-from-string (*standard-input* (delete #\Return (get-clipbrd)))
                   (main)))
                (string
                 (with-input-from-string (*standard-input* (delete #\Return thing))
                   (main)))
                (symbol (5am:run! thing))
                (pathname
                 (with-open-file (*standard-input* thing)
                   (main))))))
    (if out res (get-output-stream-string *standard-output*))))

#+swank
(defun gen-dat ()
  (uiop:with-output-file (out *dat-pathname* :if-exists :supersede)
    (format out "")))

#+swank
(defun bench (&optional (out (make-broadcast-stream)))
  (time (run *dat-pathname* out)))

;; To run: (5am:run! :sample)
#+swank
(it.bese.fiveam:test :sample
  (it.bese.fiveam:is
   (equal "8
"
          (run "3 2 3
1 2 0
2 3 1
" nil)))
  (it.bese.fiveam:is
   (equal "2660500
"
          (run "5 5 5
1 4 3
2 4 4
3 5 7
2 3 8
2 3 10
" nil)))
  (it.bese.fiveam:is
   (equal "524978526
"
          (run "6 8 1000000
2 6 10
3 5 11
4 6 23
1 3 26
1 6 30
5 6 48
3 5 88
3 6 100
" nil))))
0