結果
| 問題 | No.1206 OR, OR, OR...... | 
| コンテスト | |
| ユーザー |  kyoprouno | 
| 提出日時 | 2020-08-30 13:34:51 | 
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) | 
| 結果 | 
                                AC
                                 
                             | 
| 実行時間 | 19 ms / 2,000 ms | 
| コード長 | 2,791 bytes | 
| コンパイル時間 | 2,147 ms | 
| コンパイル使用メモリ | 179,444 KB | 
| 実行使用メモリ | 19,032 KB | 
| 最終ジャッジ日時 | 2024-11-15 06:50:16 | 
| 合計ジャッジ時間 | 2,842 ms | 
| ジャッジサーバーID (参考情報) | judge3 / judge5 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 1 | 
| other | AC * 8 | 
ソースコード
#pragma GCC optimize("O3")
#include <bits/stdc++.h>
#define ll long long
#define rep(i,n) for(ll i=0;i<(n);i++)
#define pll pair<ll,ll>
#define pii pair<int,int>
#define pq priority_queue
#define pb push_back
#define eb emplace_back
#define fi first
#define se second
#define endl '\n'
#define ios ios_base::sync_with_stdio(0),cin.tie(0),cout.tie(0);
#define lb(c,x) distance(c.begin(),lower_bound(all(c),x))
#define ub(c,x) distance(c.begin(),upper_bound(all(c),x))
using namespace std;
inline int topbit(unsigned long long x){
	return x?63-__builtin_clzll(x):-1;
}
inline int popcount(unsigned long long x){
	return __builtin_popcountll(x);
}
inline int parity(unsigned long long x){//popcount%2
	return __builtin_parity(x);
}
template<class T> inline bool chmax(T& a,T b){if(a<b){a=b;return 1;}return 0;}
template<class T> inline bool chmin(T& a,T b){if(a>b){a=b;return 1;}return 0;}
const ll INF=1e15;
const ll mod=998244353;
struct mint {
  ll x; // typedef long long ll;
  mint(ll x=0):x((x%mod+mod)%mod){}
  mint operator-() const { return mint(-x);}
  mint& operator+=(const mint a) {
    if ((x += a.x) >= mod) x -= mod;
    return *this;
  }
  mint& operator-=(const mint a) {
    if ((x += mod-a.x) >= mod) x -= mod;
    return *this;
  }
  mint& operator*=(const mint a) { (x *= a.x) %= mod; return *this;}
  mint operator+(const mint a) const { return mint(*this) += a;}
  mint operator-(const mint a) const { return mint(*this) -= a;}
  mint operator*(const mint a) const { return mint(*this) *= a;}
  mint pow(ll t) const {
    if (!t) return 1;
    mint a = pow(t>>1);
    a *= a;
    if (t&1) a *= *this;
    return a;
  }
 
  // for prime mod
  mint inv() const { return pow(mod-2);}
  mint& operator/=(const mint a) { return *this *= a.inv();}
  mint operator/(const mint a) const { return mint(*this) /= a;}
};
istream& operator>>(istream& is, mint& a) { return is >> a.x;}
ostream& operator<<(ostream& os, const mint& a) { return os << a.x;}
// combination mod prime
// https://www.youtube.com/watch?v=8uowVvQ_-Mo&feature=youtu.be&t=1619
struct combination {
  vector<mint> fact, ifact;
  combination(ll n):fact(n+1),ifact(n+1) {
    assert(n < mod);
    fact[0] = 1;
    for (ll i = 1; i <= n; ++i) fact[i] = fact[i-1]*i;
    ifact[n] = fact[n].inv();
    for (ll i = n; i >= 1; --i) ifact[i-1] = ifact[i]*i;
  }
  mint operator()(ll n, ll k) {
    if (k < 0 || k > n) return 0;
    return fact[n]*ifact[k]*ifact[n-k];
  }
  mint p(ll n, ll k) {
    return fact[n]*ifact[n-k];
  }
} c(1000005);
int main(){
    ll t;
    cin >> t;
    while(t--){
        ll n,k;
        cin >> n >> k;
        mint val=2;
        mint p=val.pow(n*k);
        mint q=val.pow((n-1)*k);
        mint ans=p-q;
        ans*=n;
        cout << ans << endl;
    }
    return 0;
}
            
            
            
        