結果
| 問題 |
No.1207 グラフX
|
| コンテスト | |
| ユーザー |
Ricky_pon
|
| 提出日時 | 2020-08-30 13:49:16 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 252 ms / 2,000 ms |
| コード長 | 4,518 bytes |
| コンパイル時間 | 2,587 ms |
| コンパイル使用メモリ | 204,644 KB |
| 最終ジャッジ日時 | 2025-01-13 21:25:36 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 46 |
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:169:19: warning: format ‘%lld’ expects argument of type ‘long long int*’, but argument 4 has type ‘modint<1000000007>::i64*’ {aka ‘long int*’} [-Wformat=]
169 | scanf("%d%d%lld", &n, &m, &X.a);
| ~~~^ ~~~~
| | |
| | modint<1000000007>::i64* {aka long int*}
| long long int*
| %ld
main.cpp:183:16: warning: format ‘%lld’ expects argument of type ‘long long int’, but argument 2 has type ‘modint<1000000007>::i64’ {aka ‘long int’} [-Wformat=]
183 | printf("%lld\n", ans.a);
| ~~~^ ~~~~~
| | |
| | modint<1000000007>::i64 {aka long int}
| long long int
| %ld
main.cpp:169:10: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
169 | scanf("%d%d%lld", &n, &m, &X.a);
| ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~
main.cpp:173:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
173 | scanf("%d%d%d", &x, &y, &z);
| ~~~~~^~~~~~~~~~~~~~~~~~~~~~
ソースコード
#include <bits/stdc++.h>
#define For(i, a, b) for (int(i) = (int)(a); (i) < (int)(b); ++(i))
#define rFor(i, a, b) for (int(i) = (int)(a)-1; (i) >= (int)(b); --(i))
#define rep(i, n) For((i), 0, (n))
#define rrep(i, n) rFor((i), (n), 0)
#define fi first
#define se second
using namespace std;
typedef long long lint;
typedef unsigned long long ulint;
typedef pair<int, int> pii;
typedef pair<lint, lint> pll;
template <class T>
bool chmax(T &a, const T &b) {
if (a < b) {
a = b;
return true;
}
return false;
}
template <class T>
bool chmin(T &a, const T &b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T>
T div_floor(T a, T b) {
if (b < 0) a *= -1, b *= -1;
return a >= 0 ? a / b : (a + 1) / b - 1;
}
template <class T>
T div_ceil(T a, T b) {
if (b < 0) a *= -1, b *= -1;
return a > 0 ? (a - 1) / b + 1 : a / b;
}
constexpr lint mod = 1000000007;
constexpr lint INF = mod * mod;
constexpr int MAX = 200010;
template <int_fast64_t MOD>
struct modint {
using i64 = int_fast64_t;
i64 a;
modint(const i64 a_ = 0) : a(a_) {
if (a > MOD)
a %= MOD;
else if (a < 0)
(a %= MOD) += MOD;
}
modint inv() {
i64 t = 1, n = MOD - 2, x = a;
while (n) {
if (n & 1) (t *= x) %= MOD;
(x *= x) %= MOD;
n >>= 1;
}
modint ret(t);
return ret;
}
bool operator==(const modint x) const { return a == x.a; }
bool operator!=(const modint x) const { return a != x.a; }
modint operator+(const modint x) const { return modint(*this) += x; }
modint operator-(const modint x) const { return modint(*this) -= x; }
modint operator*(const modint x) const { return modint(*this) *= x; }
modint operator/(const modint x) const { return modint(*this) /= x; }
modint operator^(const lint x) const { return modint(*this) ^= x; }
modint &operator+=(const modint &x) {
a += x.a;
if (a >= MOD) a -= MOD;
return *this;
}
modint &operator-=(const modint &x) {
a -= x.a;
if (a < 0) a += MOD;
return *this;
}
modint &operator*=(const modint &x) {
(a *= x.a) %= MOD;
return *this;
}
modint &operator/=(modint x) {
(a *= x.inv().a) %= MOD;
return *this;
}
modint &operator^=(lint n) {
i64 ret = 1;
while (n) {
if (n & 1) (ret *= a) %= MOD;
(a *= a) %= MOD;
n >>= 1;
}
a = ret;
return *this;
}
modint operator-() const { return modint(0) - *this; }
modint &operator++() { return *this += 1; }
modint &operator--() { return *this -= 1; }
bool operator<(const modint x) const { return a < x.a; }
};
using mint = modint<1000000007>;
vector<mint> fact;
vector<mint> revfact;
void setfact(int n) {
fact.resize(n + 1);
revfact.resize(n + 1);
fact[0] = 1;
rep(i, n) fact[i + 1] = fact[i] * mint(i + 1);
revfact[n] = fact[n].inv();
for (int i = n - 1; i >= 0; i--) revfact[i] = revfact[i + 1] * mint(i + 1);
}
mint getC(int n, int r) {
if (n < r) return 0;
return fact[n] * revfact[r] * revfact[n - r];
}
typedef struct UnionFindTree {
vector<int> par;
UnionFindTree(int n) { par.resize(n, -1); }
bool is_root(int x) { return par[x] < 0; }
int find(int x) {
if (is_root(x)) return x;
return par[x] = find(par[x]);
}
int size(int x) { return -par[find(x)]; }
bool unite(int x, int y) {
x = find(x);
y = find(y);
if (x == y) return false;
if (size(x) < size(y)) swap(x, y);
par[x] += par[y];
par[y] = x;
return true;
}
bool same(int x, int y) { return find(x) == find(y); }
} UF;
int n, m;
mint X, ans;
vector<pii> G[MAX];
int dfs(int v, int pv) {
int ret = 1;
for (auto [nv, z] : G[v]) {
if (nv != pv) {
int tmp = dfs(nv, v);
ans += (X ^ z) * mint(tmp) * mint(n - tmp);
ret += tmp;
}
}
return ret;
}
int main() {
scanf("%d%d%lld", &n, &m, &X.a);
UF uf(n);
rep(_, m) {
int x, y, z;
scanf("%d%d%d", &x, &y, &z);
--x;
--y;
int sx = uf.size(x), sy = uf.size(y);
if (uf.unite(x, y)) {
G[x].emplace_back(y, z);
G[y].emplace_back(x, z);
}
}
dfs(0, -1);
printf("%lld\n", ans.a);
}
Ricky_pon