結果

問題 No.1207 グラフX
ユーザー Ricky_pon
提出日時 2020-08-30 13:49:16
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 252 ms / 2,000 ms
コード長 4,518 bytes
コンパイル時間 2,587 ms
コンパイル使用メモリ 204,644 KB
最終ジャッジ日時 2025-01-13 21:25:36
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 46
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:169:19: warning: format ‘%lld’ expects argument of type ‘long long int*’, but argument 4 has type ‘modint<1000000007>::i64*’ {aka ‘long int*’} [-Wformat=]
  169 |     scanf("%d%d%lld", &n, &m, &X.a);
      |                ~~~^           ~~~~
      |                   |           |
      |                   |           modint<1000000007>::i64* {aka long int*}
      |                   long long int*
      |                %ld
main.cpp:183:16: warning: format ‘%lld’ expects argument of type ‘long long int’, but argument 2 has type ‘modint<1000000007>::i64’ {aka ‘long int’} [-Wformat=]
  183 |     printf("%lld\n", ans.a);
      |             ~~~^     ~~~~~
      |                |         |
      |                |         modint<1000000007>::i64 {aka long int}
      |                long long int
      |             %ld
main.cpp:169:10: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
  169 |     scanf("%d%d%lld", &n, &m, &X.a);
      |     ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~
main.cpp:173:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
  173 |         scanf("%d%d%d", &x, &y, &z);
      |         ~~~~~^~~~~~~~~~~~~~~~~~~~~~

ソースコード

diff #

#include <bits/stdc++.h>
#define For(i, a, b) for (int(i) = (int)(a); (i) < (int)(b); ++(i))
#define rFor(i, a, b) for (int(i) = (int)(a)-1; (i) >= (int)(b); --(i))
#define rep(i, n) For((i), 0, (n))
#define rrep(i, n) rFor((i), (n), 0)
#define fi first
#define se second
using namespace std;
typedef long long lint;
typedef unsigned long long ulint;
typedef pair<int, int> pii;
typedef pair<lint, lint> pll;
template <class T>
bool chmax(T &a, const T &b) {
    if (a < b) {
        a = b;
        return true;
    }
    return false;
}
template <class T>
bool chmin(T &a, const T &b) {
    if (a > b) {
        a = b;
        return true;
    }
    return false;
}
template <class T>
T div_floor(T a, T b) {
    if (b < 0) a *= -1, b *= -1;
    return a >= 0 ? a / b : (a + 1) / b - 1;
}
template <class T>
T div_ceil(T a, T b) {
    if (b < 0) a *= -1, b *= -1;
    return a > 0 ? (a - 1) / b + 1 : a / b;
}

constexpr lint mod = 1000000007;
constexpr lint INF = mod * mod;
constexpr int MAX = 200010;

template <int_fast64_t MOD>
struct modint {
    using i64 = int_fast64_t;
    i64 a;
    modint(const i64 a_ = 0) : a(a_) {
        if (a > MOD)
            a %= MOD;
        else if (a < 0)
            (a %= MOD) += MOD;
    }
    modint inv() {
        i64 t = 1, n = MOD - 2, x = a;
        while (n) {
            if (n & 1) (t *= x) %= MOD;
            (x *= x) %= MOD;
            n >>= 1;
        }
        modint ret(t);
        return ret;
    }
    bool operator==(const modint x) const { return a == x.a; }
    bool operator!=(const modint x) const { return a != x.a; }
    modint operator+(const modint x) const { return modint(*this) += x; }
    modint operator-(const modint x) const { return modint(*this) -= x; }
    modint operator*(const modint x) const { return modint(*this) *= x; }
    modint operator/(const modint x) const { return modint(*this) /= x; }
    modint operator^(const lint x) const { return modint(*this) ^= x; }
    modint &operator+=(const modint &x) {
        a += x.a;
        if (a >= MOD) a -= MOD;
        return *this;
    }
    modint &operator-=(const modint &x) {
        a -= x.a;
        if (a < 0) a += MOD;
        return *this;
    }
    modint &operator*=(const modint &x) {
        (a *= x.a) %= MOD;
        return *this;
    }
    modint &operator/=(modint x) {
        (a *= x.inv().a) %= MOD;
        return *this;
    }
    modint &operator^=(lint n) {
        i64 ret = 1;
        while (n) {
            if (n & 1) (ret *= a) %= MOD;
            (a *= a) %= MOD;
            n >>= 1;
        }
        a = ret;
        return *this;
    }
    modint operator-() const { return modint(0) - *this; }
    modint &operator++() { return *this += 1; }
    modint &operator--() { return *this -= 1; }
    bool operator<(const modint x) const { return a < x.a; }
};

using mint = modint<1000000007>;

vector<mint> fact;
vector<mint> revfact;

void setfact(int n) {
    fact.resize(n + 1);
    revfact.resize(n + 1);
    fact[0] = 1;
    rep(i, n) fact[i + 1] = fact[i] * mint(i + 1);

    revfact[n] = fact[n].inv();
    for (int i = n - 1; i >= 0; i--) revfact[i] = revfact[i + 1] * mint(i + 1);
}

mint getC(int n, int r) {
    if (n < r) return 0;
    return fact[n] * revfact[r] * revfact[n - r];
}

typedef struct UnionFindTree {
    vector<int> par;

    UnionFindTree(int n) { par.resize(n, -1); }

    bool is_root(int x) { return par[x] < 0; }

    int find(int x) {
        if (is_root(x)) return x;
        return par[x] = find(par[x]);
    }

    int size(int x) { return -par[find(x)]; }

    bool unite(int x, int y) {
        x = find(x);
        y = find(y);
        if (x == y) return false;
        if (size(x) < size(y)) swap(x, y);
        par[x] += par[y];
        par[y] = x;
        return true;
    }

    bool same(int x, int y) { return find(x) == find(y); }
} UF;

int n, m;
mint X, ans;
vector<pii> G[MAX];

int dfs(int v, int pv) {
    int ret = 1;
    for (auto [nv, z] : G[v]) {
        if (nv != pv) {
            int tmp = dfs(nv, v);
            ans += (X ^ z) * mint(tmp) * mint(n - tmp);
            ret += tmp;
        }
    }
    return ret;
}

int main() {
    scanf("%d%d%lld", &n, &m, &X.a);
    UF uf(n);
    rep(_, m) {
        int x, y, z;
        scanf("%d%d%d", &x, &y, &z);
        --x;
        --y;
        int sx = uf.size(x), sy = uf.size(y);
        if (uf.unite(x, y)) {
            G[x].emplace_back(y, z);
            G[y].emplace_back(x, z);
        }
    }
    dfs(0, -1);
    printf("%lld\n", ans.a);
}
0