結果

問題 No.1207 グラフX
ユーザー 👑 Kazun
提出日時 2020-08-30 16:28:41
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 1,755 ms / 2,000 ms
コード長 3,126 bytes
コンパイル時間 190 ms
コンパイル使用メモリ 82,560 KB
実行使用メモリ 461,820 KB
最終ジャッジ日時 2024-11-15 11:18:52
合計ジャッジ時間 39,682 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 46
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

class Union_Find():
def __init__(self,N):
"""0,1,...,n-1.
n:
"""
self.n=N
self.parents=[-1]*N
self.rank=[0]*N
def find(self, x):
"""x調.
x:
"""
if self.parents[x] < 0:
return x
else:
self.parents[x] = self.find(self.parents[x])
return self.parents[x]
def union(self, x, y):
"""x,y.
x,y:
"""
x = self.find(x)
y = self.find(y)
if x == y:
return
if self.rank[x]>self.rank[y]:
self.parents[x] += self.parents[y]
self.parents[y] = x
else:
self.parents[y] += self.parents[x]
self.parents[x] = y
if self.rank[x]==self.rank[y]:
self.rank[y]+=1
def size(self, x):
"""x.
x:
"""
return -self.parents[self.find(x)]
def same(self, x, y):
"""x,y?
x,y:
"""
return self.find(x) == self.find(y)
def members(self, x):
"""x.
size使!!
x:
"""
root = self.find(x)
return [i for i in range(self.n) if self.find(i) == root]
def roots(self):
"""
"""
return [i for i, x in enumerate(self.parents) if x < 0]
def group_count(self):
"""
"""
return len(self.roots())
def all_group_members(self):
"""
"""
return {r: self.members(r) for r in self.roots()}
def __str__(self):
return '\n'.join('{}: {}'.format(r, self.members(r)) for r in self.roots())
#================================================
from collections import deque
import sys
N,M,X=map(int,input().split())
sys.setrecursionlimit(2*10**5)
Mod=10**9+7
E=[[] for _ in range(N+1)]
F=[]
U=Union_Find(N+1)
for i in range(M):
x,y,z=tuple(map(int,input().split()))
if not U.same(x,y):
U.union(x,y)
E[x].append(y)
E[y].append(x)
F.append((x,y,z))
#----------------------------
Parent=[-1]*(N+1)
Parent[1]=0
Depth=[-1]*(N+1)
Depth[1]=0
Direct_Children=[set() for _ in range(N+1)]
Q=deque([1])
while Q:
u=Q.popleft()
for v in E[u]:
if Parent[v]==-1:
Q.append(v)
Parent[v]=u
Direct_Children[u].add(v)
Depth[v]=Depth[u]+1
Children=[-1]*(N+1)
def Children_Count(x):
if Children[x]!=-1:
return Children[x]
X=0
for a in Direct_Children[x]:
X+=Children_Count(a)
Children[x]=X+1
return X+1
_=Children_Count(1)
Ans=0
for (x,y,z) in F:
if Depth[x]<Depth[y]:
a,b=x,y
else:
a,b=y,x
Ans+=Children[b]*(N-Children[b])*pow(X,z,Mod)
Ans%=Mod
print(Ans)
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0