結果
| 問題 |
No.36 素数が嫌い!
|
| コンテスト | |
| ユーザー |
poapoa
|
| 提出日時 | 2020-08-30 16:30:00 |
| 言語 | Haskell (9.10.1) |
| 結果 |
AC
|
| 実行時間 | 1,027 ms / 5,000 ms |
| コード長 | 3,494 bytes |
| コンパイル時間 | 9,678 ms |
| コンパイル使用メモリ | 174,856 KB |
| 実行使用メモリ | 9,984 KB |
| 最終ジャッジ日時 | 2024-11-15 11:19:48 |
| 合計ジャッジ時間 | 14,888 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 26 |
コンパイルメッセージ
Loaded package environment from /home/judge/.ghc/x86_64-linux-9.8.2/environments/default
[1 of 2] Compiling Main ( Main.hs, Main.o )
Main.hs:73:34: warning: [GHC-63394] [-Wx-partial]
In the use of ‘head’
(imported from Prelude, but defined in GHC.List):
"This is a partial function, it throws an error on empty lists. Use pattern matching or Data.List.uncons instead. Consider refactoring to use Data.List.NonEmpty."
|
73 | wheelSieve k = reverse ps ++ map head (pSieve p (cycle ns))
| ^^^^
Main.hs:96:18: warning: [GHC-63394] [-Wx-partial]
In the use of ‘head’
(imported from Prelude, but defined in GHC.List):
"This is a partial function, it throws an error on empty lists. Use pattern matching or Data.List.uncons instead. Consider refactoring to use Data.List.NonEmpty."
|
96 | where ps = map head . List.group $ primeFactors n
| ^^^^
[2 of 2] Linking a.out
ソースコード
import qualified Data.List as List
import Data.Bool
main :: IO ()
main = readLn >>= putStrLn . bool "NO" "YES" . (>= 3) . length . concat . List.group . primeFactors
-- private
pSpin :: Num int => int -> [int] -> [int]
pSpin x (y:ys) = x : pSpin (x + y) ys
type PWheel int = ([int], [int])
data PQueue int
= Empty
| Fork [int] [PQueue int]
type Composites int = (PQueue int, [[int]])
pEnqueue :: Ord int => [int] -> PQueue int -> PQueue int
pEnqueue ns = pMerge (Fork ns [])
pMergeAll :: Ord int => [PQueue int] -> PQueue int
pMergeAll [] = Empty
pMergeAll [x] = x
pMergeAll (x:y:qs) = pMerge (pMerge x y) (pMergeAll qs)
pDequeue :: Ord int => PQueue int -> ([int], PQueue int)
pDequeue (Fork ns qs) = (ns, pMergeAll qs)
pMerge :: Ord int => PQueue int -> PQueue int -> PQueue int
pMerge Empty y = y
pMerge x Empty = x
pMerge x y
| prio x <= prio y = join x y
| otherwise = join y x
where
prio (Fork (n:_) _) = n
join (Fork ns qs) q = Fork ns (q:qs)
pDiscard :: Ord int => int -> Composites int -> Composites int
pDiscard n ns
| n == m = pDiscard n ms
| otherwise = ns
where
(m, ms) = pSplitComposites ns
pSplitComposites :: Ord int => Composites int -> (int, Composites int)
pSplitComposites (Empty, xs:xss) = pSplitComposites (Fork xs [], xss)
pSplitComposites (queue, xss@((x:xs):yss))
| x < z = (x, pDiscard x (pEnqueue xs queue, yss))
| otherwise = (z, pDiscard z (pEnqueue zs queue', xss))
where
(z:zs, queue') = pDequeue queue
pSieveComps :: (Ord int, Num int) => int -> [int] -> Composites int -> [[int]]
pSieveComps cand ns@(m:ms) xs
| cand == comp = pSieveComps (cand+m) ms ys
| cand < comp = pSpin cand ns : pSieveComps (cand + m) ms xs
| otherwise = pSieveComps cand ns ys
where
(comp, ys) = pSplitComposites xs
pComposites :: (Ord int, Num int) => int -> [int] -> Composites int
pComposites p ns = (Empty, map comps (pSpin p ns: pSieve p ns))
where
comps xs@(x:_) = map (x*) xs
pSieve :: (Ord int, Num int) => int -> [int] -> [[int]]
pSieve p ns@(m:ms) = pSpin p ns : pSieveComps (p+m) ms (pComposites p ns)
pCancel :: Integral int => int -> int -> int -> [int] -> [int]
pCancel 0 _ _ _ = []
pCancel m p n (x:ys@(y:zs))
| nx `mod` p > 0 = x : pCancel (m - x) p nx ys
| otherwise = pCancel m p n (x+y:zs)
where
nx = n + x
pNext :: Integral int => PWheel int -> PWheel int
pNext (ps@(p:_), xs) = (py:ps, pCancel (product ps) p py ys)
where
(y:ys) = cycle xs
py = p + y
pWheel :: Integral int => Int -> PWheel int
pWheel n = iterate pNext ([2], [1]) !! n
--public
wheelSieve :: Integral int => Int -> [int]
wheelSieve k = reverse ps ++ map head (pSieve p (cycle ns))
where
(p:ps,ns) = pWheel k
primeFactors :: Integral int => int -> [int]
primeFactors n = factors n (wheelSieve 6)
where
factors 1 _ = []
factors m (p:ps)
| m < p * p = [m]
| r == 0 = p : factors q (p:ps)
| otherwise = factors m ps
where
(q, r) = quotRem m p
primes :: Integral int => [int]
primes = wheelSieve 6
isPrime :: Integral int => int -> Bool
isPrime n
| n > 1 = primeFactors n == [n]
| otherwise = False
composites :: Integral int => [int]
composites = List.unfoldr (\(a1: as@(a2: at), ps@(ph: pt)) -> Just (a1, if a2 == ph then (at, pt) else (as, ps))) ([4..], drop 2 primes)
totient :: Int -> Int
totient n = n `quot` product ps * (product $ map (subtract 1) ps)
where ps = map head . List.group $ primeFactors n
poapoa